63 research outputs found

    Predicting gene expression using morphological cell responses to nanotopography

    Get PDF
    Cells respond in complex ways to their environment, making it challenging to predict a direct relationship between the two. A key problem is the lack of informative representations of parameters that translate directly into biological function. Here we present a platform to relate the effects of cell morphology to gene expression induced by nanotopography. This platform utilizes the ‘morphome’, a multivariate dataset of cell morphology parameters. We create a Bayesian linear regression model that uses the morphome to robustly predict changes in bone, cartilage, muscle and fibrous gene expression induced by nanotopography. Furthermore, through this model we effectively predict nanotopography-induced gene expression from a complex co-culture microenvironment. The information from the morphome uncovers previously unknown effects of nanotopography on altering cell–cell interaction and osteogenic gene expression at the single cell level. The predictive relationship between morphology and gene expression arising from cell-material interaction shows promise for exploration of new topographies

    Customizable, engineered substrates for rapid screening of cellular cues

    Get PDF
    Biophysical cues robustly direct cell responses and are thus important tools for in vitro and translational biomedical applications. High throughput platforms exploring substrates with varying physical properties are therefore valuable. However, currently existing platforms are limited in throughput, the biomaterials used, the capability to segregate between different cues and the assessment of dynamic responses. Here we present a multiwell array (3x8) made of a substrate engineered to present topography or rigidity cues welded to a bottomless plate with a 96-well format. Both the patterns on the engineered substrate and the well plate format can be easily customized, permitting systematic and efficient screening of biophysical cues. To demonstrate the broad range of possible biophysical cues examinable, we designed and tested three multiwell arrays to influence cardiomyocyte, chondrocyte and osteoblast function. Using the multiwell array, we were able to measure different cell functionalities using analytical modalities such as live microscopy, qPCR and immunofluorescence. We observed that grooves (5 µm in size) induced less variation in contractile function of cardiomyocytes. Compared to unpatterned plastic, nanopillars with 127 nm height, 100 nm diameter and 300 nm pitch enhanced matrix deposition, chondrogenic gene expression and chondrogenic maintenance. High aspect ratio pillars with an elastic shear modulus of 16 kPa mimicking the matrix found in early stages of bone development improved osteogenic gene expression compared to stiff plastic. We envisage that our bespoke multiwell array will accelerate the discovery of relevant biophysical cues through improved throughput and variety

    N-WASP control of LPAR1 trafficking establishes response to self-generated LPA gradients to promote pancreatic cancer cell metastasis

    Get PDF
    Pancreatic ductal adenocarcinoma is one of the most invasive and metastatic cancers and has a dismal 5-year survival rate. We show that N-WASP drives pancreatic cancer metastasis, with roles in both chemotaxis and matrix remodeling. lysophosphatidic acid, a signaling lipid abundant in blood and ascites fluid, is both a mitogen and chemoattractant for cancer cells. Pancreatic cancer cells break lysophosphatidic acid down as they respond to it, setting up a self-generated gradient driving tumor egress. N-WASP-depleted cells do not recognize lysophosphatidic acid gradients, leading to altered RhoA activation, decreased contractility and traction forces, and reduced metastasis. We describe a signaling loop whereby N-WASP and the endocytic adapter SNX18 promote lysophosphatidic acid-induced RhoA-mediated contractility and force generation by controlling lysophosphatidic acid receptor recycling and preventing degradation. This chemotactic loop drives collagen remodeling, tumor invasion, and metastasis and could be an important target against pancreatic cancer spread

    Poly(ethylmethacrylate-co-diethylaminoethyl acrylate) coating improves endothelial re-population, bio-mechanical and anti-thrombogenic properties of decellularized carotid arteries for blood vessel replacement

    Get PDF
    Decellularized vascular scaffolds are promising materials for vessel replacements. However, despite the natural origin of decellularized vessels, issues such as biomechanical incompatibility, immunogenicity risks and the hazards of thrombus formation, still need to be addressed. In this study, we coated decellularized vessels obtained from porcine carotid arteries with poly (ethylmethacrylate-co-diethylaminoethylacrylate) (8g7) with the purpose of improving endothelial coverage and minimizing platelet attachment while enhancing the mechanical properties of the decellularized vascular scaffolds. The polymer facilitated binding of endothelial cells (ECs) with high affinity and also induced endothelial cell capillary tube formation. In addition, platelets showed reduced adhesion on the polymer under flow conditions. Moreover, the coating of the decellularized arteries improved biomechanical properties by increasing its tensile strength and load. In addition, after 5 days in culture, ECs seeded on the luminal surface of 8g7-coated decellularized arteries showed good regeneration of the endothelium. Overall, this study shows that polymer coating of decellularized vessels provides a new strategy to improve re-endothelialization of vascular grafts, maintaining or enhancing mechanical properties while reducing the risk of thrombogenesis. These results could have potential applications in improving tissue-engineered vascular grafts for cardiovascular therapies with small caliber vessels

    Middle ear microbiome differences in indigenous Filipinos with chronic otitis media due to a duplication in the A2ML1 gene

    Get PDF
    Middle ear microbial profiles of indigenous Filipinos with chronic otitis media. All panels compare carriers with non-carriers of the A2ML1 duplication variant. Panel description: (A) ι-diversity by observed OTUs; (B) ι-diversity by the Shannon diversity index; (C) β-diversity from unweighted UniFrac principal coordinate analysis; (D) β-diversity from weighted UniFrac principal coordinate analysis. (PDF 1019 kb

    Neutron-diffraction studies of amorphous CNx materials

    Get PDF
    The results of neutron-diffraction experiments performed on two samples of amorphous CNx, with nitrogen concentrations of 5 and 30 at. %, prepared by a combination of filtered cathodic are and Kaufman-type ion source, are presented. Increasing the N content of the samples is seen to cause a decrease of the average bond length and the first coordination number. An increase in the average bond angle from 113 degrees to 121 degrees is also observed. The pair-distribution functions indicate that N incorporation results in some transformation of sp(3) C sites to sp(2) sites, but there is no evidence for N inducing the formation of crystalline graphitic clusters, and the overall structure remains amorphous. A direct subtraction of the two data sets emphasizes the loss of sp(3) bonds and the increasing sp(2) character of the higher-N-content sample, and shows the occurrence of a variety of bonding environments for N. More limited information on second neighbor correlations involving N is also revealed

    Exome sequencing reveals novel variants and unique allelic spectrum for hearing impairment in Filipino cochlear implantees

    Get PDF
    Genetic hearing impairment is mostly nonsyndromic (80%), and >6,000 causal variants in >100 genes have been identified. Generally in hearing-impaired patients of Asian descent, GJB2 variants are most common (36%), followed by variants in SLC26A4 (MIM 605646), MYO15A (MIM 602666) and CDH23 (MIM 605516). Here we report seven novel variants in Filipino cochlear implantees, suggesting that the allelic spectrum for non-/syndromic hearing impairment in Filipinos is unique

    Durability and extent of protection of SARS-CoV-2 antibodies among patients with COVID-19 in Metro Manila, Philippines

    Get PDF
    IntroductionInformation on the magnitude and durability of humoral immunity against COVID-19 among specific populations can guide policies on vaccination, return from isolation and physical distancing measures. The study determined the durability of SARS-CoV-2 antibodies after an initial infection among Filipinos in Metro Manila, Philippines, and the extent of protection SARS-CoV-2 antibodies confer against reinfection.MethodsWe conducted a cohort study to monitor the antibody levels of patients diagnosed with COVID-19. Receptor-binding domain (RBD)-specific antibodies were measured at Days 21, 90, 180, 270 and 360. Antibody levels were reported as geometric mean titers (GMT) with geometric standard deviation (GSD). Differences in GMT were tested using Friedman test and Kruskal Wallis test, with Bonferroni multiple comparisons procedure. Adjusted hazard ratios on the development of probable reinfection were estimated using Cox proportional models.ResultsThere were 307 study participants included in the study, with 13 dropouts. Study participants received SARS-CoV-2 vaccines at varying times, with 278 participants (90.5%) fully vaccinated by the end of study. The GMT of the study cohort increased over time, from 19.7 U/mL (GSD 11) at Day 21; to 284.5 U/mL (GSD 9.6) at Day 90; 1,061 U/mL (GSD 5.3) at Day 180; 2,003 U/mL (GSD 6.7) at Day 270; and 8,403 U/mL (GSD 3.1) at Day 360. The increase was statistically significant from Day 21 to Day 90 (p<0.0001), Day 90 to Day 180 (p=0.0005), and Day 270 to Day 360 (p<0.0001). Participants with more severe initial infection demonstrated significantly higher antibody levels compared to those with milder infection at Day 21. Sixty-four patients had probable COVID-19 reinfection (incidence of 20.8%, 95% CI 16.4, 25.8%). The GMT of these 64 patients was 411.8 U/mL (GSD 6.9) prior to the occurrence of the probable reinfection. Majority (87.5%) were fully vaccinated. Antibody titers significantly affected the risk of developing reinfection, with adjusted hazard ratio of 0.994, 95% CI 0.992-0.996, p<0.001.ConclusionAntibody levels against SARS-CoV-2 increased over a one-year follow-up. Higher antibody levels were observed among those with more severe initial infection and those vaccinated. Higher antibody levels are associated with a lower risk of probable reinfection

    A2ML1 and otitis media : novel variants, differential expression, and relevant pathways

    Get PDF
    A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.Peer reviewe
    corecore