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Abstract 

A genetic basis for otitis media is established, however the role of rare variants in disease 
etiology is largely unknown. Previously a duplication variant within A2ML1 was 
identified as a significant risk factor for otitis media in an indigenous Filipino population 
and in US children. In this report exome and Sanger sequencing was performed using 
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DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US 
probands, and Finnish and Pakistani families with otitis media. Sixteen novel, damaging 
A2ML1 variants identified in otitis media patients were rare or low-frequency in 
population-matched controls. In the indigenous population, both gingivitis and A2ML1 
variants including the known duplication variant and the novel splice variant 
c.4061+1G>C were independently associated with otitis media. Sequencing of salivary 
RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression 
according to carriage of A2ML1 variants. Sequencing of additional salivary RNA samples 
from US patients with otitis media revealed differentially expressed genes that are highly 
correlated with A2ML1 expression levels. In particular RND3 is upregulated in both 
A2ML1 variant carriers and high-A2ML1-expressors. These findings support a role for 
A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media 
pathology and the potential application of ROCK inhibition in otitis media.  

Graphical Abstract 

In this report novel rare or low-frequency variants were identified in multiple 
populations, including a novel splice variant c.4061+1G>C that, together with gingivitis 
and a known A2ML1 duplication variant, confer increased susceptibility to otitis media 
in an indigenous Filipino population. RNA-sequencing revealed that pathogenic A2ML1 
variants decrease A2ML1 transcript levels, while changes in A2ML1 levels in otitis 
media patients result in differential expression of multiple genes that are known to be 
involved in mucosal, epithelial or infectious traits. Our findings support a role for 
A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media 
pathology and the potential application of ROCK inhibition in otitis media. 
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Introduction 

Otitis media is a very common and costly disease in young children that can cause 

hearing loss and further lead to speech and reading difficulties (le Clerq et al. 2017; 

Khavarghazalani et al. 2016; Carroll et al. 2017; Cai & McPherson, 2017). Known risk 

factors for otitis media include young age, lack of breastfeeding, allergies, upper 

respiratory infection, second-hand smoke, low social status, day care attendance, multiple 

siblings and family history (Brennan-Jones et al. 2015; Zhang et al. 2014). In the US, 

otitis media incidence in children remains high at 6%, 23% and 46% at ages 3, 6 and 9 

months, respectively (Chonmaitree et al. 2016). In pediatric and adult emergency 

departments, 2.2% and 6.8% of visits are due to ear complaints and nearly two-thirds of 

these complaints are diagnosed as otitis media (Kozin et al. 2015). Annual health care 

expenditures due to office visits, antibiotics, and surgeries for US children <30 months 

old is estimated to cost $5 billion (Casey & Pichichero, 2014). 

The persistence of high incidence of otitis media in children despite maximization 

of public health interventions point to other risk factors including immune weaknesses 

and genetic predisposition. Heritability of otitis media ranges from 22-74% depending on 

otitis media type and cohort (Casselbrant et al. 1999; Hafrén et al. 2012). The 

identification of genetic risk factors and disease-related pathways is one area of otitis 

media study for which efficient tools are available but discovery remains very limited 

compared to other common complex, inflammatory, immune, or infectious disorders. 
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While the most current catalog of genome-wide association studies (GWAS) lists >3,500 

studies, only five studies (<0.15%) using common single nucleotide polymorphisms 

(SNP) identified significant loci for OM susceptibility, namely: intergenic rs10497394 on 

2q31.1 (Allen et al. 2013); rs16974263 in the 19q13.2 region which is intronic to PRX 

(MIM 605725) encoding periaxin (Einarsdottir et al. 2016); FNDC1 (MIM 609991) at 

6q25.3 (van Ingen et al. 2016); and rs76488276 at 16p12.3 which is ~94kb away from 

innate immune gene GP2 (MIM 602977; Li et al. 2017). In the largest GWAS to date 

including >120,000 European-descent individuals (Pickrell et al. 2016; Tian et al. 2017), 

15 risk variants were identified, including four SNPs that were coding and/or intronic but 

in linkage disequilibrium with coding variants. However the heritability estimated to be 

due to these common variants is low at ~1% (Tian et al. 2017). 

On the other hand, more studies have been done for the otitis media 

transcriptome, although these were mostly done using microarrays in rodent models and 

cultured human middle ear epithelial cells (HMEEC). In these studies an acute otitis 

media-like condition was induced with Streptococcus pneumoniae (Spn), non-typeable 

Haemophilus influenzae (ntHI), influenza A virus, TLR gene knockdown, particulate 

matter, or lipopolysaccharide (Li et al. 2003; Li-Korotky et al. 2004; Leichtle et al. 

2009a, 2009b, 2012; Lee et al. 2011; Preciado et al. 2013; MacArthur et al. 2013; Kurabi 

et al. 2015; Hernandez et al. 2015). In ntHI-inoculated mice, top upregulated genes 

included inflammatory cytokines Cxcl1, Cxcl2 and IL-6 (Preciado et al. 2013; MacArthur 

et al. 2013; Hernandez et al. 2015). Differential expression of these genes were likewise 

detected in Tlr-/- mice, treatment with particulate matter, influenza infection and aging 

(Leichtle et al. 2012; Nielsen et al. 2016; Kim et al. 2016; Tong et al. 2004; Song et al. 
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2013). Gene ontology and network analyses identified genes involved in NFKB signaling, 

innate and immunoglobulin-mediated immune response, inflammatory response, 

complement activation and cytokine activity (MacArthur et al. 2013; Hernandez et al. 

2015; Song et al. 2011). However the expression of these pro-inflammatory cytokines 

and enrichment of these pathways are not unique to middle ear but are also seen in 

various inflammatory processes in the nose, lung, and colon and in autoimmune diseases 

such as diabetes and rheumatoid arthritis (Bartling et al. 2009; Sadighi Akha et al. 2013; 

Ong et al. 2016; Chen et al. 2016; Vozarova et al. 2003; Kishimoto 1992). Nonetheless 

these studies increased our knowledge of multiple otitis media-related genes and 

pathways in a time- and context-dependent manner. 

Pichichero et al. conducted two transcriptome studies using serum samples from 

children with culture-verified acute otitis media pre- and post-infection (Liu et al. 2012, 

2013; Pichichero et al. 2016). Genes for host immune response such as complement 

activation, TLR, and cytokines were differentially expressed in Spn- and ntHI-infected 

children (Liu et al. 2012, 2013). Differential expression of genes for antimicrobial 

activity according to pathogen were suggested to correlate with less local inflammation 

and systemic illness during acute otitis media due to ntHI vs. Spn (Pichichero et al. 

2016). Genes encoding lactotransferrin and peptidoglycan recognition protein were 

downregulated in Spn-infected children (Liu et al. 2012); both proteins are abundantly 

secreted in the apical air-liquid interface of mouse middle ear epithelium (Mulay et al. 

2016). In ntHI-infected children, STAT1 (MIM 600555) and PTGS2 (MIM 600262) were 

downregulated (Liu et al. 2013), which was inconsistent with their upregulation in ntHI-

treated mice and influenza-infected HMEECs (MacArthur et al. 2013; Tong et al. 2004), 
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possibly in part due to the small sample size (n=4) per study (Liu et al. 2012, 2013; 

Pichichero et al. 2016) 

Our previous discovery of A2ML1 (MIM 610627), which encodes alpha-2-

macroglobulin-like-1, as an autosomal dominant gene for otitis media susceptibility 

suggested that rare variants play a role in otitis media pathology (Santos-Cortez et al. 

2015). An indigenous Filipino population with a ~50% prevalence of otitis media was 

found to have an A2ML1 duplication variant as the strongest predictor for disease 

(Santos-Cortez et al. 2016b). The same duplication variant was also identified to be 

associated with otitis-prone status in US children (Santos-Cortez et al. 2015). The 

duplication variant is predicted to cause aberrant coding of alpha-2-macroglobulin-like-1, 

a middle-ear-localized protein that may play a role in mitigating mucosal damage during 

infection and bears close structural resemblance to alpha-2-macroglobulin (A2M), which 

is a known inflammatory marker in the middle ear and oral cavity (Santos-Cortez et al. 

2015). Salivary A2M is increased during inflammatory conditions in the oral cavity, such 

as gingivitis and periodontal disease (Pederson et al. 1995). Furthermore in a microbiome 

study, indigenous Filipino carriers with the A2ML1 duplication and otitis media harbor 

bacterial pathogens that are commonly associated with dental and oropharyngeal 

infections e.g. Fusobacteria and Bacteroidetes (Santos-Cortez et al. 2016a), suggesting 

the possibility of A2ML1-related pathophysiologic processes in the oral cavity.  

Here we report novel A2ML1 variants from exome and Sanger sequence data of 

Filipino, Finnish, Pakistani and US patients with otitis media. We further describe 

A2ML1 variants in relation to gene transcription and oral cavity conditions in indigenous 

Filipinos. Lastly using RNA-sequence analyses we demonstrate that upregulation of 
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A2ML1 is correlated with differential expression of multiple genes, particularly genes 

within keratinocyte and epidermal cell differentiation pathways.  

Methods 

Study participants 

Ethical approval of this study was obtained from: the University of the Philippines 

Manila Research Ethics Board; the National Commission on Indigenous Peoples, the 

Institutional Review Board (IRB) of the Helsinki University Hospital; IRB of the 

University of Maryland School of Medicine; IRB of the University of Texas Medical 

Branch (UTMB) Galveston; IRB of the Institute of Molecular Biology and 

Biotechnology, Bahauddin Zakariya University, Multan, Pakistan; and the Colorado 

Multiple IRB. For the indigenous Filipino population, community consent was obtained 

prior to study initiation. Individual informed consent was given by all adult participants 

and parents or guardians of children enrolled in the study. 

The indigenous Filipino (Negrito) population is a relatively closed community 

resulting in extensive intermarriage within six founding families that can be traced 

genealogically by oral history to 6-7 generations ago. Few individuals who are from other 

Negrito tribes from adjacent islands married into the community. Due to their physical 

features of short stature, darkly pigmented skin, curly hair and flat noses, the community 

has suffered racial segregation from the general Filipino population, resulting in limited 

opportunities for education, economic advancement, socio-cultural assimilation and 

health care access. Their community is protected by the government, allowing access 
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only to researchers who have fulfilled both the community’s and the government’s 

requirements for conducting research projects.  

For the indigenous community, otitis media was diagnosed based on otoscopic 

findings at last examination. Chronic otitis media was diagnosed for eardrum perforations 

with smooth edges, usually with mucoid or mucopurulent discharge and thickened middle 

ear mucosa. Acute otitis media was diagnosed for hyperemic eardrums with or without 

perforation or discharge, while otitis media with effusion was identified if with dull non-

hyperemic intact eardrums with poor mobility or visible fluid behind the eardrum. Healed 

otitis media was noted for previously diagnosed chronic, acute or effusive otitis media 

that has resolved on follow-up examination, or if with healed perforations or eardrum 

scarring. An individual with chronic, acute, effusive or healed otitis media was labeled as 

affected with otitis media. Of 135 individuals with DNA samples who were examined by 

otologists for otitis media, fifty agreed to be checked by dentists for gum disease and 

dental caries. For the dental exams, gingivitis is defined as gum inflammation with 

clinical signs and symptoms of bleeding and swelling, with probing depths at 1-3 mm. 

Extensive review of systems during medical history and physical examination of different 

parts of the body including skin ruled out additional features that may be part of a 

syndrome, immunodeficiency or other genetic disease.  

From an indigenous community of ~200 individuals, 135 (67.5%) provided saliva 

samples for DNA isolation using Oragene DNA Collection Kits (DNAgenotek, Ottawa, 

Ontario, Canada). Of these 135 individuals with DNA samples, 124 (91.9%) have known 

relations that can be traced to a single pedigree. DNA samples were isolated from saliva 

using the manufacturer’s protocol. An additional 29 Filipino cochlear implantees 
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provided DNA samples isolated from blood for a study on genetic variants for hearing 

impairment (Chiong et al. 2013, 2018; Truong et al. 2019). 

The Finnish families (Hafrén et al. 2012; Einarsdottir et al. 2016) were 

ascertained from the Helsinki University Hospital upon referral of the proband for otitis 

media. Finnish patients were considered positive for otitis media if they had insertion of 

tympanostomy tubes, effusive otitis media for >2 months, or recurrent otitis media (i.e. 

>3 episodes in 6 months or >4 episodes in 12 months).  

For Pakistani families with otitis media, detailed interviews were conducted with 

family members to gather information on pedigree structure, comorbidities, onset of 

disease and initial symptoms. The clinical diagnosis was based on ear discharge and 

air/bone conduction audiometry. The different groups of study participants are further 

described in Supp. Table S1.  

Exome and Sanger sequencing 

Six DNA samples from indigenous Filipinos with otitis media were submitted for exome 

sequencing at the University of Washington Center for Mendelian Genomics (UWCMG) 

on an Illumina HiSeq. Sequence capture was performed in solution with either the Roche 

NimbleGen SeqCap EZ Human Exome v.2.0 or the Big Exome 2011 Library. Fastq files 

were aligned to the hg19 human reference sequence using Burrows-Wheeler Aligner 

(BWA; Li & Durbin, 2009, 2010) to generate demultiplexed BAM files. Realignment of 

indel regions, recalibration of base qualities, and variant detection and calling were 

performed using the Genome Analysis Toolkit (GATK; McKenna et al. 2010) to produce 

VCF files. Annotation was performed with SeattleSeq. Two A2ML1 (RefSeq 
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NM_144670.5) variants, a duplication and a splice variant, identified from exome data 

were Sanger-sequenced using the 135 DNA samples from indigenous Filipinos. 

Available exome sequence data from 29 cochlear implantees from the general Filipino 

population were also examined for A2ML1 variants (Chiong et al. 2018). Clinical data of 

A2ML1 variant carriers were then checked for otitis media diagnoses. For the Filipino 

population, identified A2ML1 variants were Sanger- sequenced using >180 DNA samples 

from unrelated individuals from the Cebu Longitudinal Health and Nutrition Survey 

cohort, which were not ascertained for otitis media (Adair et al. 2011). 

DNA isolated from blood samples of 234 individuals with otitis media from 218 

Finnish families were also submitted for exome sequencing at the University of 

Washington Northwest Genomics Center, and using the Roche NimbleGen SeqCap EZ 

Human Exome v.2.0 library, processed as described above. Identified A2ML1 variants 

were Sanger-sequenced in the probands and the rest of family members (Supp. Fig. S1). 

From all participating family members of 16 Pakistani families with otitis media, 

peripheral blood samples were collected for DNA extraction. All coding exons of A2ML1 

were Sanger-sequenced in two families. For 14 additional families, a DNA sample of an 

affected individual was submitted for exome sequencing. Genomic libraries were 

recovered for exome enrichment using the Agilent SureSelect Human Expanded All 

Exon V5 (62 Mb) kit. Libraries were sequenced on an Illumina HiSeq. 4000 with average 

100× coverage. Alignment and variant calling were likewise performed using BWA and 

GATK, respectively. Sanger sequencing of the A2ML1 c.3676_3677delGC variant was 

performed for the rest of family members with DNA samples from two families PKOM-

10 and PKOM-15 (Supp. Fig. S2). 
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Previously we Sanger-sequenced all 35 coding exons of A2ML1 using DNA 

samples from 123 otitis-prone children who were ascertained at UTMB (Patel et al. 2006; 

Santos-Cortez et al. 2015). These children were considered otitis-prone based on the 

following criteria: first episode of acute otitis media at <6 months; >3 episodes of acute 

otitis media within a 6-month period; >4 episodes of acute otitis media within a 12-month 

period; >6 episodes by 6 years old; or tympanostomy tube surgery for recurrent or 

persistent otitis media (Patel et al. 2006). In our previous publication, A2ML1 variants in 

these children were selected only if (1) it is the most deleterious variant even though 

there are multiple variants observed in the same child, (2) is absent in controls 

particularly if missense, and (3) if with scaled Combined Annotation Dependent 

Depletion (CADD) score >15 plus damaging prediction by at least two bioinformatics 

tools. For this report the Sanger sequence data from these otitis-prone children were 

reviewed for additional A2ML1 variants based on less stringent criteria. The decision to 

use less stringent criteria is based on our recent observations of common variants that are 

deemed polymorphisms due to higher MAF but are shown to be involved in otitis media 

susceptibility, and of otitis media patients carrying multiple variants from the same gene 

or multiple genes despite observation of autosomal dominant inheritance with reduced 

penetrance in families (Santos-Cortez et al. 2018). 

For all identified variants whether previously published or novel, variants were 

classified as pathogenic/likely pathogenic or variant of unknown significance (VUS) 

based on current criteria from the American College of Medical Genetics (ACMG; 

Richards et al. 2015) using the Genetic Variant Interpretation Tool. 
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Bioinformatics, linkage and mixed model analyses 

From exome or Sanger sequence data, variants were considered further if they have MAF 

less than 0.02 in the general population, have a scaled CADD score greater than 3, and 

are considered damaging by at least one additional bioinformatics tool (Table 1). For the 

Finnish, Pakistani and US populations, MAF was derived from the genome Aggregation 

Database (gnomAD) using Finnish, South Asian, non-Finnish European or Latino allele 

data, when appropriate.  

For the two A2ML1 variants c.3676_3677delGC and c.4061+1G>C, two-point 

linkage analysis was performed using Superlink (Fishelson & Geiger, 2002). For the 

frameshift variant, linkage analysis was performed using variant MAF of 0.07, disease 

allele frequency of 0.01, and two modes of inheritance, namely: (a) affecteds-only with 

autosomal dominant inheritance, 90% penetrance and 5% phenocopy rate; and (b) 

autosomal recessive inheritance with full penetrance and no phenocopies (Supp. Fig. S2). 

For the A2ML1 c.4061+1G>C variant in the indigenous population, two-point linkage 

analysis was performed using an affecteds-only model with autosomal dominant 

inheritance, 90% penetrance, 5% phenocopy rate, disease allele frequency of 0.01 and 

variant MAF of 0.000001 (Supp. Fig. S3). 

Fisher exact test was used to test associations between A2ML1 variants, otitis 

media and/or dental findings in the indigenous Filipino population. For mixed model 

analysis testing the association between otitis media and multiple variables including age, 

sex, carriage of at least one A2ML1 variant and gingivitis as fixed effects, grouping by 

family branch or household was used as a random effect variable.  
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RNA sequencing and analysis 

For RNA studies, saliva samples were collected from nine indigenous Filipinos using the 

Oragene·RNA RE-100 kit. An additional 23 saliva samples were collected from otitis 

media patients undergoing surgery at the Children’s Hospital Colorado and the 

University of Colorado Hospital (Supp. Tables S1-S2) using Oragene·RNA kits. Salivary 

RNA was extracted according to the manufacturer’s protocol. 

RNA samples were analyzed on an Agilent 2200 Tapestation and processed with 

the NuGen Trio RNA-Seq Kit at the University of Colorado Denver Genomics and 

Microarray Core. RIN values ranged from 4.5-7.7 (+ S.D. 0.92). Sequencing libraries 

were sequenced on an Illumina HiSeq. 4000 generating 50 bp single-end reads, with 

Filipino samples pooled at equimolar concentrations and sequenced in a single lane while 

Colorado samples were pooled and sequenced across three lanes. Reads were trimmed 

and adaptor sequences were removed using the FASTX-Toolkit (v0.0.13) prior to 

alignment to the hg38 human genome (GENCODE release 24) using STAR v2.5.3a 

(Dobin et al. 2013). Aligned reads were summarized at the gene level using 

featureCounts v1.5.2 with default parameters (Liao et al. 2014). For Filipino RNA 

samples, raw counts were analyzed according to variant carriage using Wilcoxon tests in 

R.  

For the Colorado samples, count values from the technical replicates per sample 

were summed. Genes with an average count value of <3 were discarded resulting in 

~12,000 remaining genes. The filtered count matrix was input to DESeq. 2 v1.20.0 (Love 

et al. 2014) in R v3.5.1 for differential expression analysis, while comparing high- vs. 
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low-A2ML1-expressors. For correlation analysis, the normalized count matrix from 

DESeq. 2 was rlog-transformed, then correlation was performed for A2ML1 vs. all other 

genes using the Spearman method in R. Heatmap visualization of DESeq. 2 results was 

performed using the ‘pheatmap’ package in R. Gene Ontology (GO) terms and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways were identified using the 

Generally Applicable Gene-set Enrichment (GAGE v2.30.0) package in R (Luo et al. 

2009). Log-2 fold changes calculated by DESeq. 2 were input to GAGE and processed 

using default parameters. 

1.1 For validation of differentially expressed genes, cDNA was 
generated from 23 RNA samples from Colorado using the Invitrogen SuperScript 
IV protocol. Each cDNA sample was used for qPCR on a Bio-Rad machine 
(Hercules, CA, USA) in triplicate using the Applied Biosystems PowerUp SYBR 
green master mix and each set of primers for A2ML1 (NM_144670.5), 
differentially expressed genes AHNAK (NM_001620.2) and RND3 
(NM_005168.4), and ACTB (NM_001101.3) as control. Fold change was 
determined according to ΔCT values. 

Results 

Sixteen novel, rare or low-frequency A2ML1 variants were identified from exome data of 

individuals with otitis media (Table 1). Seven of these variants were observed in UTMB 

otitis-prone probands. Notably two probands UTMB-959 and UTMB-1031 have 2-3 

A2ML1 variants each with at least one as a novel variant (Table 1). Most of these variants 

found in UTMB probands did not pass previously set criteria due to lower CADD scores 

using the earlier software version and/or having only one damaging prediction, for 

example, c.2228C>T (p.(Pro743Leu)) in UTMB-1027 and c.2971G>C (p.(Ala991Pro)) in 

UTMB-1018. However due to lack of additional evidence, these novel variants along 
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with some previously identified variants in UTMB probands were classified as VUS 

(Table 1; Fig. 1). 

Four novel variants were identified as heterozygous in Finnish otitis media 

patients with exome data, including two missense and two non-canonical splice variants, 

all of which are predicted to be damaging (Table 1; Supp. Fig. S1). Two variants c.971-

8C>T and c.1308A>C (p.(Gln436His)) occurred uniquely in a single Finnish proband. 

The c.2197T>C (p.(Phe733Leu)) was found in two individuals and has a MAF=0.004 in 

the Finnish population, while the low-frequency splice variant c.2713-8C>A was 

observed in seven Finnish families (Table 1). The Finnish probands carrying A2ML1 

variants have no known syndromic features. 

 From the sequence data of 16 Pakistani families with otitis media, affected 

individuals from two families carried a frameshift variant c.3676_3677delGC 

(p.(Ala1226Glnfs*34)) that is predicted by MutationTaster (Schwarz et al. 2010) to be a 

polymorphism though leading to nonsense-mediated decay (Supp. Fig. S2). This variant 

has MAF=0.07 in gnomAD South Asian alleles and does not fully co-segregate with 

otitis media in the two Pakistani families using an autosomal dominant model or 

affecteds-only analysis (Supp. Fig. S2). Because three affected individuals of family 

PKOM-15 are homozygous for the frameshift variant and has otitis media from early 

childhood, the variant potentially co-segregates with autosomal recessive otitis media in 

branch 2 of family PKOM-15. However the LOD score is deflated compared to the 

maximum LOD score that is expected given pedigree branch structure and autosomal 

recessive inheritance with full penetrance (Supp. Fig. S2). All other A2ML1 variants 

identified in the sequence data of the Pakistani families were frequent (MAF>0.20) or 
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deemed non-damaging to function. For these families, autosomal recessive variants that 

remain to be identified likely play a greater role in otitis media pathology. 

Four A2ML1 variants were identified in three Filipino children who had cochlear 

implantation for congenital hearing impairment and who also have a history of otitis 

media. One child was heterozygous for two A2ML1 variants, namely c.10C>T 

(p.(Gln4*)) and c.2329G>A (p.(Gly777Arg)). Of these two variants, the stop variant is 

classified as pathogenic while the missense variant is a VUS (Table 1; Fig. 1). 

Unfortunately we have no parental DNA for testing if these two variants are compound 

heterozygous or in linkage disequilibrium. At age 8 months, a year prior to cochlear 

implantation, the child with these two variants had bilateral type C tympanograms. This 

patient is also homozygous for SLC26A4 (MIM 605646) c.706C>G (p.Leu236Val) which 

is the known cause for his profound hearing loss and enlarged vestibular aqueducts 

(Chiong et al. 2018). The second Filipino cochlear implantee is heterozygous for A2ML1 

c.2012T>C (p.(Leu671Pro)) and had a flat tympanogram for the right implanted ear 14 

months post-surgery at age 6 ½ years. She is also homozygous for a splice variant 

c.2301+1G>T within OTOA (MIM 607038), likely the genetic cause of her congenital 

profound hearing loss (Truong et al. 2019). The third cochlear implantee is heterozygous 

for both a variant in hearing loss gene COL4A3 (MIM 120070) c.764C>T 

(p.(Thr255Met)) and A2ML1 c.4061+1G>C. All four A2ML1 variants identified in 

Filipino cochlear implantees were predicted to be damaging and were absent in the 

general Filipino population (Table 1).  

Previously the A2ML1 c.2478_2485dupGGCTAAAT (p.Ser829Trpfs*9) variant 

was identified in the exome sequence data of two second-cousins from the indigenous 
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Filipino population (Santos-Cortez et al. 2015). Out of 135 individuals (Table 2), this 

duplication variant is heterozygous in 62 and homozygous in eight indigenous Filipinos, 

and of these 70 variant carriers, 49 (70%) have otitis media. However, 33 individuals 

who were wildtype for the duplication variant also had otitis media. We therefore 

submitted for exome sequencing DNA samples from four additional individuals who 

were wildtype for the duplication variant and come from different subpedigrees within 

the community. In two individuals with exome data, the A2ML1 splice variant 

c.4061+1G>C was identified. Of 135 indigenous individuals (Table 2), one is 

homozygous and 24 are heterozygous for the splice variant, including nine that are 

compound heterozygous for the two A2ML1 variants. Majority of those who carry the 

splice variant can be connected by three subpedigrees based on known relations (Supp. 

Fig. S3). Two-point linkage analysis for the splice variant resulted in a LOD score of 3.2 

(θ=0; Supp. Fig. S3). In total, 86 (63.7%) of the screened population carry A2ML1 

variants, and of these 60 (69.7%) have otitis media (Table 1). Conversely of 82 

individuals with otitis media, 60 (73.2%) carry A2ML1 variants. Therefore among 135 

indigenous Filipinos, the odds ratio for an A2ML1 variant carrier having otitis media is 

2.8 (95%CI: 1.3, 6.2; p=0.006; Table 2). 

Among 50 indigenous Filipinos with dental examinations, 28 (56%) had otitis 

media and 34 (68%) carried A2ML1 variants, which is comparable to the bigger cohort 

(Table 2). In addition, 52% were male with a mean age of 13.64 years (range 4 months - 

47 years). Of these 50 individuals, 44 had dental caries, 24 had gum bleeding and 38 

were diagnosed with gingivitis. None of these dental conditions were associated with 

A2ML1 variants, however gingivitis was associated with otitis media (OR=5.6, 95%CI: 
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1.1, 37.5; p=0.02). In mixed models analysis, in which family branch or household was 

analyzed as a random effect, otitis media was associated with both gingivitis (p=0.0007) 

and A2ML1 variants (p=0.048). Neither age nor sex was associated with otitis media, 

consistent with previous findings (Santos-Cortez et al. 2016b). 

 To further determine the effect of the A2ML1 duplication and splice variants in 

the indigenous Filipinos, RNA-sequencing was performed using salivary DNA from nine 

indigenous individuals, two of whom are wildtype, five are heterozygous, one compound 

heterozygous and one homozygous. RNA counts showed a decrease in salivary A2ML1 

expression according to carriage of A2ML1 variants (Fig. 2A).  

Because A2ML1 variants related to otitis media are rare, in order to study the 

effects of changes in A2ML1 expression in otitis media, salivary DNA samples from 23 

otitis media patients from Colorado were also submitted for RNA-sequencing. For this 

analysis, based on the inflection of the count plot for A2ML1 in the Colorado samples 

(Supp. Fig. S4), differential expression analysis was initially performed using a threshold 

count of 33 for the Colorado samples, dividing the group into low- and high-A2ML1-

expressors. Out of 12,107 post-filtered genes in salivary RNA, differential expression 

analysis using DESeq. 2 identified 745 (6.2%) genes at FDR-adjusted p<0.05, with 442 

upregulated and 303 downregulated genes in high-A2ML1-expressors (Supp. Tables S3-

S4). Because A2ML1 count values ranged from ~5-550 (+S.D.125), we also performed a 

genome-wide correlation analysis and A2ML1 values were compared against all other 

genes. A total of 41 genes were highly correlated with A2ML1 (r >+0.81, Bonferroni-

corrected p<0.05; Table 3). Of note, 14 genes overlap among the top differentially 

expressed genes identified by both DESeq. 2 and correlation analysis, including: MUC21 
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(MIM 616991); PPL (MIM 602871); SPINK5 (MIM 605010); LPIN1 (MIM 605518); 

KRT13 (MIM 148065); SCEL (MIM 604112); CRNN (MIM 611312); TGM3 (MIM 

600238); LMO7 (MIM 604362); MAL (MIM 188860); MYO5B (MIM 606540); SASH1 

(MIM 607955); FLG (MIM 135940); and TMPRSS11B (Fig. 3; Table 3). Of the 41 

correlated genes, AHNAK and RND3 were also found to be upregulated in indigenous 

Filipino A2ML1-variant carriers compared to wildtype (Fig. 2B-2C). Validation using 

qPCR on the Colorado RNA samples confirmed that RND3 is significantly enriched in 

high-A2ML1-expressors (Table 4). 

When genes with log-2-fold differential expression >2 were analyzed using the 

GAGE package, 88 KEGG pathways and gene ontology terms were enriched (p<0.05; 

Supp. Table S5). In particular, keratinocyte differentiation (p=2.9x10-6) and epidermal 

cell differentiation (p=3.2x10-5) were enriched in high-A2ML1-expressors (Supp. Table 

S5). 

Because the mean age of low-A2ML1-expressors was noticeably higher than high-

A2ML1-expressors (Supp. Table S2), we reanalyzed the Colorado dataset excluding 

samples with age >10 years (low-A2ML1-expressors mean 3.27 years vs. high-A2ML1 

expressors mean 1.71 years). Differential expression analysis yielded similar results, 

albeit fewer significant genes were detected i.e. 371 upregulated and 157 downregulated 

genes in A2ML1-high-expressors (Supp. Table S6). Many of the same KEGG and GO 

terms were upregulated in A2ML1-high-expressors, however downregulated KEGG and 

GO terms were different (Supp. Table S6). We attribute these differences to the reduced 

number of significantly dysregulated genes. Regardless we conclude that the age range in 
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the low-A2ML1-expressors does not account for any of the dysregulated genes we 

observed. 

Discussion 

In this study we identified sixteen novel A2ML1 variants in otitis media patients, two of 

which are pathogenic based on ACMG criteria (Table 1; Fig. 1), further providing 

evidence to support a role for A2ML1 in middle ear mucosal pathology. Interestingly the 

variants that are deemed pathogenic are loss-of-function variants that are mostly 

predicted by MutationTaster to result in nonsense-mediated decay (Table 1). This is 

further supported by decreased transcription levels of A2ML1 due to the duplication and 

c.4061+1G>C variants (Fig. 2A). All the loss-of-function variants are also predicted to 

remove important domains, with at least the receptor-binding domain (RBD) being 

affected (Fig. 1). Based on the known crystallographic structure of homotetrameric A2M 

complex, after induction the RBD of one monomer protrudes into the circulation which 

results in the recognition of the tetramer by cell-surface receptors and leads to 

endocytosis, lysosomal degradation and clearance of the protease inhibitor complex along 

with the proteases it trapped (Marrero et al. 2012). Loss of the RBD is therefore predicted 

to result in lack of recognition of A2ML1 and failure of clearance of proteases for 

removal in order to prevent undue damage to mucosa. In our previous study, we showed 

that some missense variants are predicted to result in more subtle torsional changes in the 

macroglobulin (MG) or thiol-ester domains that interact to form the tetrameric structure 

(Santos-Cortez et al. 2015). In particular, most of the A2ML1 variants identified in otitis 

media patients occur within the MG6-MG7 domains, and these MG6-MG7 domains are 

required to close the superhelical structure in order to trap proteases that are baited by the 
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bait-region domain (BRD) within MG6 (Marrero et al. 2012). Because most of the 

missense variants identified were seen in single probands and were therefore classified as 

VUS, identification of additional otitis media patients with these specific variants will aid 

in establishing variant pathogenicity. 

Three of the novel A2ML1 variants were recurrent: the splice variant 

c.4061+1G>C variant was identified in the indigenous Filipino population and in a 

cochlear implantee with otitis media from the general Filipino population; and a missense 

variant c.2197C>T (p.(Phe733Leu)) and a splice variant c.2713-8C>A in Finnish patients 

with otitis media. Here we also identified a frameshift variant in two Pakistani families, 

however this variant did not co-segregate with otitis media suggesting both intra-familial 

genetic heterogeneity (Rehman et al. 2015) and unidentified otitis media susceptibility 

variants with likely autosomal recessive inheritance (Supp. Fig. S2). In our previous 

study the A2ML1 duplication variant c.2478_2485dupGGCTAAAT that was initially 

identified to co-segregate with otitis media in the intermarried indigenous Filipino 

population was also genome-wide significant in three European-American and Hispanic-

American children (Santos-Cortez et al. 2015; Table 1). Taken together, these findings 

suggest that A2ML1 variants conferring otitis media susceptibility are population-

specific.  

Although A2ML1 variants in general confer susceptibility to autosomal dominant 

nonsyndromic otitis media, the consanguineous Pakistani family PKOM-15 has 

additional cognitive, cranial and cardiac anomalies that do not co-segregate with the 

c.3676_3677delGC (p.(Ala1226Glnfs*34)) variant or otitis media. These additional 

phenotypes are not exactly the same but have some overlaps with the clinical features of 
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intellectual disability, craniofacial and cardiac defects i.e. pulmonary valve stenosis in 

Noonan-like syndrome due to rare A2ML1 variants p.Arg592Leu, p.Arg802Leu and 

p.Arg802His (Vissers et al. 2015). Note that A2ml1-mutant zebrafish also had broad 

heads and failed cardiac looping (Vissers et al. 2015). A2ML1 variants have also been 

associated with hypertension, however the variants identified for hypertension do not 

overlap with otitis media-related variants, except for two variants p.Val296Ala and 

p.Arg893* which were observed separately in US probands with otitis media and in 

Europeans with hypertension (Table 1; Fig. 1; Santos-Cortez et al. 2015; Surendran et al. 

2016). This may suggest that allelic heterogeneity for A2ML1 contributes to phenotypic 

heterogeneity; for example, A2ML1 variants identified for otitis media cluster within the 

MG6 and MG7 domains while variants for hypertension tend to lie within the MG3 

domain and the TED region of the CUB domain, alluding to differences in genotype-

phenotype effects (Fig. 1; Surendran et al. 2016). On the other hand, it might also mean 

that A2ML1 variants confer susceptibility to otitis media in childhood and hypertension in 

later life. 

While potential pleiotropic effects of A2ML1 remain to be fully resolved, our data 

showed that A2ML1 variants are not associated with oral disease. Previously A2M 

protein was found to be higher in gingival crevicular fluid of patients with gingivitis and 

chronic periodontitis, but whether A2M plays a role in pathogenesis or is merely a 

marker for inflammation is unknown (Ertugrul et al. 2013). We first hypothesized that the 

structural similarity between A2M and A2ML1 might translate to an increased risk for 

dental disease conferred by A2ML1 variants. However in this study A2ML1 variants were 

not associated with dental conditions including gum disease. Saliva possesses a vast array 
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of enzymes, immunoglobulins, glycoproteins and cystatins that preserve the equilibrium 

of the microbiological flora in the oral cavity and are crucial in maintaining oral health 

(Amerongen & Veerman, 2002). This could account for why a defect in a single 

immunoregulatory protein in saliva would not necessarily lead to breakdown of 

protective barriers and consequently manifest as dental disease. It is also possible that in 

the head and neck region the mucosal protection conferred by A2ML1 is specific to the 

middle ear despite the upper airway being contiguous with the oral cavity (Santos-Cortez 

et al. 2015). Such compartmentalization of tissue-site expression of immune factors has 

been documented in other parts of the body with mucosal surfaces (Burgener et al. 2013). 

 On the other hand, both gingivitis and A2ML1 variants contribute independently 

to otitis media status. These significant effects are observed independent of age, and with 

correction for household or close familial relations as a random effect. When gum 

inflammation is present, retrograde movement of pathogens from the oral cavity into the 

nasopharynx and eventually the middle ear may contribute to otitis media pathogenesis. 

For example, clonal similarity between Fusobacterium nucleatum isolated from middle 

ear effusion and the oropharynx was documented previously (Topcuoglu et al. 2012). In 

middle ears of A2ML1 variant carriers, we observed a nominally significant increase in 

relative abundance of Fusobacteria and Bacteroidetes, which are more commonly 

identified as oral cavity or oropharyngeal pathogens (Santos-Cortez et al. 2016a; Suzuki 

et al. 2015; Yang et al. 2014). The additional finding of gingivitis as an independent risk 

factor for otitis media further supports the oral cavity as a potential source of otitis media 

pathogens in middle ears with weaker mucosal protection due to A2ML1 defects (Santos-

Cortez et al. 2015, 2016a). It also suggests that prevention of gum disease may be an 
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effective public health measure towards decreasing otitis media burden in the indigenous 

Filipino population.  

 Another significant finding is the co-upregulation of genes, including genes 

involved in keratinocyte and epidermal cell differentiation, when A2ML1 is upregulated. 

One of the byproducts of chronic otitis media is cholesteatoma, which is a collection of 

squamous debris encapsulated by keratinized epithelium in the middle ear (Maniu et al. 

2014). In contrast to pseudostratified ciliated or simple squamous epithelium of healthy 

middle ear mucosa, the cholesteatoma capsule consists of keratinized stratified squamous 

epithelial matrix and a collagenous submatrix with inflammatory cells (Lim & Saunders, 

1972). Given that many of the cellular, biochemical and regulatory factors favoring 

cholesteatoma growth, expansion and bony erosion remain unknown, the differentially 

expressed genes due to lower or higher A2ML1 expression may provide clues to the 

process of cholesteatoma formation. 

 Interestingly RND3 and AHNAK were shown to be upregulated in otitis media 

patients, whether in high-A2ML1-expressors or in A2ML1 variant carriers with lower 

A2ML1 expression. This may suggest that RND3 and AHNAK are involved in middle ear 

homeostasis in response to changes in A2ML1 expression. RND3 encodes Rho GTPase 

3/RhoE which disorganizes the actin cytoskeleton by inhibiting ROCK-1, RhoA and Rac 

signaling while increasing cytokines NFKB and IRAK (Guasch et al. 2007). Interestingly 

Rac activates JNK, and in the infected mouse middle ear JNK inhibition resulted in 

decreased mucosal hyperplasia (Furukawa et al. 2007). In addition, injured astrocytes 

treated with Fasudil, a ROCK inhibitor, had widespread AHNAK labeling and 

downregulated protein degradation pathways, indicating a healthy state (O’Shea et al. 
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2015). Likewise treatment of the inflamed gut with Rnd3 reduced microvascular 

permeability (Breslin et al. 2016). ROCK inhibition is actually a common method for 

forming a confluent layer of HMEECs in culture studies (Mulay et al. 2016), however 

this application has not been considered for augmenting therapies for otitis media. 

 Overall our studies further support a role for A2ML1 in otitis media and reveal 

novel variants, genes and pathways related to otitis media pathology. 
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 Table 1. A2ML1 Variants Identified in Multi-ethnic Families and Probands with Otitis Media 

Cohort
-

Patient 
ID 

hg19 
chr12 

Coordi
nate 

Variant 
(NM_144670.5)† 

Cont
rol 
MA
F‡ 

Protein 

Domain 

CA
DD 

Muta
tion 

Taste
r 

PolyPh
en-2 

HumD
v 

PROV
EAN 

SI
FT 

MutationA
ssessor 

I. Pathogenic/likely pathogenic 

CIFIL-
11 

89752
57 

c.10C>T 
(p.(Gln4*))  

0 MG1 35.0 D(N
MD) 

-- -- -- -- 

UTMB-
1039 

89900
70 

c.763C>T 
(p.(Gln255*)) 

0 MG3 35.0 D(N
MD) 

-- -- -- -- 

IPOM, 
UTMB-
959/969/
970 

90048
27 

c.2478_2485dupG
GCTAAAT 

(p.(Ser829Trpfs*)) 

0 MG7 -- D(N
MD) 

-- -- -- -- 

UTMB
-1031 

90098
25 

c.2914G>T 
(p.(Glu972*)) 

0 CUB/
TED 

44.0 D(N
MD) 

-- -- -- -- 

IPOM, 
CIFIL-
21 

90209
54 

c.4061+1G>C 0 RBD 25.7 D -- -- -- -- 

II. Variants of unknown significance 

UTMB-
1031 

89758
79 

c.164C>T 
(p.(Thr55Ile) 

0 MG1 19.6 P Po
D 

D D M 

UTMB-
1178, 

UMN-
123 

89909
63 

c.887T>C 
(p.(Val296Ala))  

0.00
09 

MG3 22.5 P B D D M 

UHF-
269 

89917
01 

c.971-8C>T  0.00
06 

MG3 13.9 D -- -- -- -- 
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 UTMB-
1017 

89918
05 

c.1067C>G 
(p.(Pro356Arg))  

0 MG4 25.0 P Po
D 

D D M 

UHF-
101 

89957
89 

c.1308A>C 
(p.(Gln436His))  

0.00
005 

MG4 15.4 P B N T M 

UTMB-
1026 

89988
18 

c.1683G>C 
(p.(Gln561His)) 

0 MG6 33.0 D Po
D 

D D M 

CIFIL-
14 

90014
94 

c.2012T>C 
(p.(Leu671Pro))  

0 MG6/
BRD 

13.3 P B D D/
T 

L 

UTMB-
998 

90028
25 

c.2189G>A 
(p.(Arg730His) 

0.00
003 

MG6 21.3 P B D T/
D 

L 

UHF-
254/255 

90028
33 

c.2197T>C 
(p.(Phe733Leu))  

0.00
4 

MG6 23.0 D B D T/
D 

L 

UTMB-
1027 

90028
64 

c.2228C>T 
(p.(Pro743Leu)) 

0 MG6 23.4 P B D T L 

CIFIL-
11 

90044
74 

c.2329G>A 
(p.(Gly777Arg)) 

0 MG7 23.3 D PrD D D H 

UTMB-
1031 

90045
73 

c.2428G>A 
(p.(Ala810Thr)) 

0 MG7 25.2 D PrD D D H 

UTMB-
1019 

90048
87 

c.2545G>T 
(p.(Asp849Tyr)) 

0 MG7 15.6 P Po
D 

D D M 

UTMB-
1030 

90068
10 

c.2677C>T 
(p.(Arg893*)) 

0.00
009 

MG7 34.0 D(N
MD) 

-- -- -- -- 

7 UHF 
families 

90073
68 

c.2713-8C>A§ 0.01
3 

MG7 4.8 D -- -- -- -- 

UTMB-
1018 

90098
82 

c.2971G>C 
(p.(Ala991Pro) 

0 CUB/
TED 

20.8 P B N D L 

UTMB- 90099 c.3001C>T 0 CUB/ 24.5 P PrD D D M 
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971 12 (p.(Arg1001Trp)) TED 

UTMB-
959 

90138
82 

c.3491C>T 
(p.(Ala1164Val)) 

0 CUB/
TED 

27.5 D PrD D D M 

PKOM-
10/15 

90165
63 

c.3676_3677delG
C 

(p.(Ala1226Glnfs
*34)) 

0.07 CUB/
TED 

-- P(N
MD) 

-- -- -- -- 

UTMB
-1027 

90270
91 

c.4292C>T 
(p.(Ala1431Val)) 

0 RBD 25.6 D PrD D D L 

Abbreviations: BRD, bait-region domain; CADD, Combined Annotation Dependent Depletion; CIFIL, 
Filipino cochlear implantee; CUB, complement protein subcomponent C1r/C1s, urchin embryonic growth 
factor and bone morphogenetic protein 1 domain; IPOM, indigenous Filipino cohort; MAF, minor allele 
frequency; MG, macroglobulin domain; RBD, receptor-binding domain; TED, thiol ester-containing 
domain; UHF, Finnish cohort; UMN, Minnesota cohort; UTMB, Texas cohort. MutationTaster: D, disease-
causing; NMD, nonsense-mediated decay; P, polymorphism. PolyPhen-2: PrD, probably damaging; PoD, 
possibly damaging; B, benign. PROVEAN: D, deleterious; N, neutral. SIFT: D, deleterious; T, tolerated 
(“/” denotes multiple predictions depending on isoform). MutationAssessor: H, high; M, medium; L, low. 

†Novel variants are in bold font. Known variants were previously reported in Santos-Cortez et al. 2015. 

‡For CIFIL and IPOM, control MAF is from the Cebu Longitudinal Health and Nutrition Survey. For UHF, 
UMN and PKOM, control MAF is from gnomAD Finnish, non-Finnish European and South Asian, 
respectively. For UTMB, control MAF is either from gnomAD non-Finnish European or Latino 
populations depending on self-reported ethnicity. UTMB IDs 959, 1030, 1031, 1039 and 1178 are Hispanic 
while the rest of UTMB IDs are non-Hispanic White. In some cases the gnomAD MAF in another 
population is higher, e.g. the c.2677C>T (p.(Arg893*)) variant has Latino MAF 0.00009 but has African 
and non-Finnish European MAF=0.0002.  

§Eight individuals with exome data from seven Finnish families carry the c.2713-8C>A variant (Supp. Fig. 
S1). From the exome data two common SNPs namely rs73037000 (chr12:8987285G>A) and rs1860967 
(chr12:9013755C>T) flank the c.2713-8C>A variant, which comprise a short 26,470-bp haplotype found in 
all eight carriers. However four carriers have various common or low-frequency variants within the 
haplotype, suggesting that this haplotype is very old and multiple recombinations have occurred within the 
region. 
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 Table 2. A2ML1 Genotypes and Otitis Media Status for 135 Indigenous Filipinos 

A2ML1 genotype Normal otoscopy Otitis media† Total 

Wildtype 27 22 49 

Heterozygous, duplication 17 36 53 

Heterozygous, splice 5 10 15 

Compound heterozygous 1 8 9 

Homozygous, duplication 3 5 8 

Homozygous, splice 0 1 1 

Total with variant‡ 26 60 86 

Overall total  53 82 135 

†Of 60 A2ML1 variant carriers with otitis media, 22 (36.7%) have chronic otitis media, 
23 (38.3%) with healed otitis media, 14 (23.3%) with effusive otitis media, and 1 with 
acute otitis media based on last exam. In contrast, among 22 wildtype individuals with 
otitis media, 9 (40.9%) have chronic otitis media, 5 (22.7%) with healed otitis media, 
another 5 (22.7%) with effusive otitis media and 3 (13.6%) with acute otitis media. 
Fifteen of the 22 wildtype individuals with otitis media carry the FUT2 c.604C>T 
(p.Arg202*) variant which also plays a role in otitis media susceptibility (Santos-
Cortez et al. 2018; Supp. Fig. S3). 

‡The Fisher exact odds ratio for an A2ML1 variant carrier having otitis media is 2.8 
(95%CI: 1.3, 6.2; p=0.006). 
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Table 3. Top 41 genes correlated with A2ML1 in Colorado patients and their known role in mucosal, 
epithelial or infectious traits 

Gene Spearman R p-value Known Role in 
Mucosa/Infection/Epithelium 

Reference 

EMP1 0.919 3.30E-06 Downregulated in nasal polyps Yu et al. 2013 

SPRR3 0.903 3.28E-06 Upregulated in chronic rhinosinusitis Ramakrishnan et al. 
2017 

RND3 0.896 3.19E-06 Forms confluent layer of HMEECs Mulay et al. 2016 

CSTB 0.887 3.02E-06 Upregulated in gingival epithelial 
cells after contact with 
Fusobacterium nucleatum 

Yin & Dale 2007 

MUC21 0.886 3.00E-06 Induced by RSV and hMPV Banos-Lara et al. 2015 

RNR2 0.880 2.84E-06 Expressed in olfactory mucosa Bergstrom et al. 2007 

MTRNR2L8 0.876 2.73E-06 -- -- 

KRT4 0.876 2.73E-06 Upregulated in cholesteatoma Britze et al. 2014 

PPL 0.873 2.60E-06 Autoimmune target in IPF Taille et al. 2011 

SPINK5 0.870 2.50E-06 Otitis media in Netherton syndrome Renner et al. 2009 

TMPRSS11
B 

0.869 2.47E-06 Expressed in squamous epithelia of 
cervix, esophagus and oral cavity 

Miller et al. 2014 

ECM1 0.867 2.40E-06 Mucosal defect in lipoid proteinosis Mirancea et al. 2007 

ERO1L 0.867 2.40E-06 High expression in gastric cancer 
with poor prognosis 

Seol et al. 2016 

LPIN1 0.866 2.36E-06 Downregulated due to high-fat diet 
along with changes in 
gastrointestinal mucosa 

Zhou et al. 2016 

S100A10 0.862 2.23E-06 Interaction with TRPV6 in airway 
and gut epithelia 

Borthwick et al. 2008 

KRT13 0.858 2.09E-06 Mutations lead to white sponge 
naevus in buccal mucosa 

Liu et al. 2011 

TMPRSS11
D 0.858 2.09E-06 Protease in airway epithelium Menou et al. 2017 

AHNAK 0.851 1.89E-06 Upregulated in otitis media This report 

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 SPRR1B 0.848 1.82E-06 Upregulated in chronic rhinosinusitis Ramakrishnan et al. 
2017 

SCEL 0.847 1.80E-06 Forms cornified envelope in 
stratified squamous epithelium 

Baden et al. 2005 

RNR1 0.845 1.76E-06 -- -- 

CRNN 0.843 1.73E-06 Downregulated in esophageal cancer Pawar et al. 2013 

CAST 0.840 1.71E-06 Decreases influenza A infection Blanc et al. 2016 

PABPC1 0.837 1.71E-06 Interaction with HSV-1 proteins Dobrikova et al. 2010 

ADAM9 0.836 1.72E-06 Increased in COPD bronchial cells Wang et al. 2018 

ATF6B -0.836 1.72E-06 -- -- 

KRT78 0.834 1.74E-06 Expressed in squamous epithelia Langbein et al. 2016 

TGM3 0.833 1.76E-06 Cross-links with HPV proteins Brown et al. 2006 

LMO7 0.832 1.78E-06 Upregulated by H.pylori in gastric 
cells Lim et al. 2003 

AIM1 0.831 1.81E-06 Expressed in EBV-infected cells Cahir-McFarland et al. 
2004 

ANXA1 0.831 1.81E-06 Regulates intestinal mucosal injury, 
inflammation and repair 

Babbin et al. 2008 

FAM129B 0.831 1.81E-06 Knockout results in delayed healing 
of wounded skin; keratinocyte-
expressed 

Oishi et al. 2012 

SEMA3F -0.831 1.81E-06 Regulates neurite growth in lingual 
epithelium 

Vilbig et al. 2004 

ANXA2 0.830 1.84E-06 Increased bacterial opsonization and 
clearance in otitis media 

Renner et al. 2016 

MAL 0.830 1.84E-06 Methylated in dysplastic cervix Mersakova et al. 2014 

EHF 0.823 2.21E-06 Regulates airway gene expression Fossum et al. 2017 

ERGIC2 0.823 2.21E-06 -- -- 

MYO5B 0.820 2.47E-06 Mutation causes intestinal 
microvillus defects 

Muller et al. 2008 

SASH1 0.816 2.91E-06 Mutation causes lentiginous skin 
phenotypes Zhang et al. 2016 

FLG 0.813 3.34E-06 Lower expression in cholesteatoma Nguyen et al. 2014 
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 KLK13 0.810 3.85E-06 In periodontitis Porphyromonas 
gingivalis proteases degrade 
SPINK6 resulting in loss of KLK13 
inhibition 

Plaza et al. 2016 

HMEEC, human middle ear epithelial cells; RSV, respiratory syncytial virus; hMPV, human 
metapneumovirus; IPF, idiopathic pulmonary fibrosis; HSV-1, herpes simplex virus-1; COPD, chronic 
obstructive pulmonary disease; HPV, human papilloma virus; EBV, Epstein-Barr virus. 

 

 

Table 4. Fold Changes by Gene Based on qPCR ΔCT Values from Colorado patients 

Gene High-Expressors Low-Expressors ΔΔCT Fold Change 

A2ML1 5.94 8.45 -2.52 5.72* 

AHNAK 5.32 6.08 -0.76 1.69 

RND3 4.05 6.53 -2.48 5.58** 

*p<0.05, **p<0.01 
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Figures 

Fig. 1. A2ML1 variants identified in families and probands with otitis media and their 
occurrence within protein domains. Domain names as in footnote to Table 1. Variants on 
top of the boxed representation of the A2ML1 protein are novel and are included in this 
report; below are previously published (Santos-Cortez et al. 2015). Variants in bold red 
font are pathogenic/likely pathogenic while the rest of variants are of unknown 
significance. 
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Fig. 2. RNA counts from indigenous Filipinos for [A] A2ML1, [B] RND3 and [C] 

AHNAK. RND3 and AHNAK are upregulated in A2ML1-variant carriers (p=0.05) and 

high A2ML1-expressors (RND3 2.7-log2foldΔ, adj-p=4.1x10-6; AHNAK 1.5-log2foldΔ, 

adj-p=0.003). 

 

Fig. 3. Heatmap for top 20 differentially expressed genes (plus RND3 and AHNAK) 

according to A2ML1 expression in 23 otitis media patients from Colorado. For each data 

point, the row mean has been subtracted. 
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	1.1 For validation of differentially expressed genes, cDNA was generated from 23 RNA samples from Colorado using the Invitrogen SuperScript IV protocol. Each cDNA sample was used for qPCR on a Bio-Rad machine (Hercules, CA, USA) in triplicate using th...



