56 research outputs found

    Vanishing influence of the band gap on the charge exchange of slow highly charged ions in freestanding single-layer MoS2

    Get PDF
    Charge exchange and kinetic energy loss of slow highly charged xenon ions transmitted through freestanding monolayer MoS2 are studied. Two distinct exit charge state distributions, characterized by high and low charge states, are observed. They are accompanied by smaller and larger kinetic energy losses, as well as scattering angles, respectively. High charge exchange is attributed to two-center neutralization processes, which take place in close impact collisions with the target atoms. Experimental findings are compared to graphene as a target material and simulations based on a time-dependent scattering potential model. Independent of the target material, experimentally observed charge exchange can be modeled by the same electron capture and de-excitation rates for MoS2 and graphene. A common dependence of the kinetic energy loss on the charge exchange for MoS2 as well as graphene is also observed. Considering the similarities of the zero band-gap material graphene and the 1.9 eV band-gap material MoS2, we suggest that electron transport on the femtosecond timescale is dominated by the strong influence of the ion’s Coulomb potential in contrast to the dispersion defined by the material’s band structure

    Forest Management Scenarios in a Changing Climate: Trade-Offs Between Carbon, Timber, and Old Forest

    Get PDF
    Balancing economic, ecological, and social values has long been a challenge in the forests of the Pacific Northwest, where conflict over timber harvest and old-growth habitat on public lands has been contentious for the past several decades. The Northwest Forest Plan, adopted two decades ago to guide management on federal lands, is currently being revised as the region searches for a balance between sustainable timber yields and habitat for sensitive species. In addition, climate change imposes a high degree of uncertainty on future forest productivity, sustainability of timber harvest, wildfire risk, and species habitat. We evaluated the long-term, landscape-scale trade-offs among carbon (C) storage, timber yield, and old forest habitat given projected climate change and shifts in forest management policy across 2.1 million hectares of forests in the Oregon Coast Range. Projections highlight the divergence between private and public lands under business-as-usual forest management, where private industrial forests are heavily harvested and many public (especially federal) lands increase C and old forest over time but provide little timber. Three alternative management scenarios altering the amount and type of timber harvest show widely varying levels of ecosystem C and old-forest habitat. On federal lands, ecological forestry practices also allowed a simultaneous increase in old forest and natural early-seral habitat. The ecosystem C implications of shifts away from current practices were large, with current practices retaining up to 105 Tg more C than the alternative scenarios by the end of the century. Our results suggest climate change is likely to increase forest productivity by 30–41% and total ecosystem C storage by 11–15% over the next century as warmer winter temperatures allow greater forest productivity in cooler months. These gains in C storage are unlikely to be offset by wildfire under climate change, due to the legacy of management and effective fire suppression. Our scenarios of future conditions can inform policy makers, land managers, and the public about the potential effects of land management alternatives, climate change, and the trade-offs that are inherent to management and policy in the region

    How Will Climate Change and Bioenergy Harvest Affect Carbon Storage in the Oregon Coast Range

    Get PDF
    This poster shows how the researchers used a simulation model to explore the impacts of varying scenarios of climate change and forest management on the ecosystem carbon

    Elektromagnetischer Innenohrmikrowandler zur Anregung der Perilymphe bei Schwerhörigkeit

    No full text

    Bioenergy Harvest, Climate Change, and Forest Carbon in the Oregon Coast Range

    Get PDF
    Forests provide important ecological, economic and social services, and recent interest has emerged in the potential for using residue from timber harvest as a source of renewable woody bioenergy. The long-term consequences of such intensive harvest are unclear, particularly as forests face novel climatic conditions over the next century. We used a simulation model to project the long-term effects of management and climate change on above- and below ground carbon storage in a watershed in northwestern Oregon. The multi-ownership watershed has a diverse range of current management practices, including little-to-no harvesting on federal lands, short-rotation clear-cutting on industrial land, and a mix of practices on private non-industrial land. We simulated multiple management scenarios, varying the rate and intensity of harvest, combined with projections of climate change. Our simulations project a wide range of total ecosystem carbon storage with varying harvest rate, ranging from a 45% increase to a 16% decrease compared to current levels. Increasing the intensity of harvest for bioenergy caused an additional 2-3% decrease in ecosystem carbon relative to conventional harvest practices. Soil carbon was relatively insensitive to harvest rotation and intensity, and accumulated slowly regardless of harvest regime. Climate change reduced carbon accumulation in soil and detrital pools due to increasing heterotrophic respiration, and had variable effects on total ecosystem carbon, ranging from a 5% decrease to a 2% increase depending on management scenario. Overall, we conclude that current levels of ecosystem carbon storage are maintained in part due to substantial portions of the landscape (federal and some private lands) remaining unharvested or lightly managed. Increasing the intensity of harvest for bioenergy on currently harvested land, however, led to a small reduction in the ability of forests to store carbon. Climate change is unlikely to substantially alter carbon storage in these forests, absent shifts in disturbance regimes
    • 

    corecore