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Abstract 

Forests provide important ecological, economic and social services, and recent interest has 

emerged in the potential for using residue from timber harvest as a source of renewable woody 

bioenergy. The long-term consequences of such intensive harvest are unclear, particularly as 

forests face novel climatic conditions over the next century. We used a simulation model to 

project the long-term effects of management and climate change on above- and belowground 

carbon storage in a watershed in northwestern Oregon. The multi-ownership watershed has a 

diverse range of current management practices, including little-to-no harvesting on federal lands, 

short-rotation clear-cutting on industrial land, and a mix of practices on private non-industrial 

land. We simulated multiple management scenarios, varying the rate and intensity of harvest, 

combined with projections of climate change. Our simulations project a wide range of total 

ecosystem carbon storage with varying harvest rate, ranging from a 45% increase to a 16% 

decrease compared to current levels. Increasing the intensity of harvest for bioenergy caused an 

additional 2-3% decrease in ecosystem carbon relative to conventional harvest practices. Soil 

carbon was relatively insensitive to harvest rotation and intensity, and accumulated slowly 

regardless of harvest regime. Climate change reduced carbon accumulation in soil and detrital 

pools due to increasing heterotrophic respiration, and had variable effects on total ecosystem 

carbon, ranging from a 5% decrease to a 2% increase depending on management scenario. 

Overall, we conclude that current levels of ecosystem carbon storage are maintained in part due 

to substantial portions of the landscape (federal and some private lands) remaining un-harvested 

or lightly managed. Increasing the intensity of harvest for bioenergy on currently harvested land, 
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unlikely to substantially alter carbon storage in these forests, absent shifts in disturbance 

regimes. 

Introduction 

Forests provide many important ecosystem services, including wildlife habitat, recreation, soil 

protection, clean air and water, and timber production. As we face unprecedented global 

challenges in the twenty first century, forests are also increasingly recognized for other services, 

including the ability to store carbon and mitigate the impacts of climate change (Bonan, 2008, 

D'Amato et al., 2011, Golden et al., 2011, McKinley et al., 2011) and the potential to provide 

bioenergy from harvest residue (USDOE 2011, Malmsheimer et al., 2011). Bioenergy harvest 

involves removal of residue such as branches, tops, leaves, small trees, and/or shrubs, along with 

removing merchantable material as in conventional harvest practices. This harvest residue can be 

processed to produce electricity or other types of energy (e.g., pellets for wood stoves) from a 

renewable source of biomass as an alternative to energy from fossil fuels. However, concerns 

remain over the ability of intensively harvested forests to maintain productivity, sequester 

carbon, and provide ecosystem services. For example, Harmon and Marks (2002) predicted that 

removing residue following harvest through prescribed burning substantially lowered the ability 

of forests to store carbon. Soil nutrient concentrations could also decline due to the removal of 

additional, nutrient-rich material during bioenergy harvest, and could lead to declining 

productivity over time (Wall, 2012). Studies are mixed, with evidence for positive, neutral, and 

negative effects of bioenergy harvest on tree productivity, soil and nutrient pools (reviewed in 

Thiffault et al., 2011). 
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change is increasing temperatures and changing precipitation patterns in the Pacific Northwest 

(Stocker et al., 2013), and may produce novel conditions not yet experienced by long-lived forest 

tree species which cannot rapidly migrate or adapt to such changes. Climate change has already 

caused range shifts and mortality in some forest tree species (Daniels et al., 2011, Hennon et al., 

2012). The effects of climate change are likely to increase substantially over the next century, 

with expected increases in mortality due to insects and disease (Kurz et al., 2008), increased 

frequency and severity of wildfire (Littell et al., 2010, Westerling et al., 2006), and shifting 

ranges of tree species (Bachelet et al., 2001, Coops & Waring, 2011). Climate change may also 

reduce carbon sequestration potential and the ability of forests to mitigate climate impacts 

(Loudermilk et al., 2013, Rogers et al., 2011). If climate change causes increased stress on trees 

or declines in productivity, it may exacerbate any negative effects of conventional or bioenergy 

harvest. 

US federal agencies have recently been tasked in an executive order to address potential climate 

change effects and promote climate resilience on federally adminstered lands (Executive Order 

13653). Many federal lands have been managed for multiple uses, including timber production, 

wildlife habitat, and recreation, and the recent executive order adds carbon sequestration to the 

list of values. To make informed management decisions and evaluate the best options for 

maintaining forest productivity, carbon sequestration, and ecosystem health, an assessment of the 

long-term effects of management actions and climate change on ecosystem properties is 

required. As it is impossible to study large-scale and long-term processes experimentally, 

researchers and managers increasingly rely on simulation models to estimate the long-term 
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provides a framework whereby many scenarios, each containing different assumptions about 

future conditions or actions, can be explored to reduce some of the uncertainty about the future 

and help inform management (Thompson et al., 2012). Several simulation models have been 

used in the Pacific Northwest to understand the effects of timber harvest (Harmon et al., 2009, 

Johnson et al., 2007) and climate change (Coops & Waring, 2011, Hudiburg et al., 2013a, Littell 

et al., 2010, Rogers et al., 2011), but few have simulated both (Hudiburg et al., 2013b). 

In this study, we simulated the effects of forest management and climate change on above- and 

belowground carbon storage in a northwest Oregon watershed. We explored 49 combinations of 

management actions and climate projections to examine a wide range of possible future 

conditions across a multi-owner landscape. Our study questions were: How might varying rate 

and intensity of timber harvest affect long-term carbon storage in forest vegetation, detritus, and 

soils of the Oregon Coast Range? What are the likely impacts of climate change on carbon 

storage under a range of potential future climatic conditions? Will there be interactions between 

harvesting and climate change? 

Materials and Methods 

Study Area 

This study focuses on the Panther Creek watershed (PCW), on the eastern slope of the Oregon 

Coast Range Mountains (Figure 1). Forests of the Coast Range are highly productive and are 

dominated by Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga 

heterophylla (Raf.) Sarg.), which provide high quality timber. The watershed is 7016 hectares in 
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study. The land ownership and management in the watershed includes private non-industrial 

forest (PNIF, 44% of the watershed), private industrial forest (PIF, 39%), and public lands 

administered by the Bureau of Land Management (BLM, 18%). The climate is characterized by 

wet winters and dry summers, and soils are productive and high in carbon content. In the Coast 

Range, forests lie within a complex matrix of publically and privately owned lands due to the 

legacy of historical land development. Historically, these forests were heavily harvested, but 

passage of the 1994 Northwest Forest Plan dramatically reduced timber harvest and increased 

carbon storage on federal lands in the region (Krankina et al., 2012). As a result, current stand 

composition and harvest practices are diverse, ranging from clear-cut harvest on industrial lands 

to large areas with no or limited harvest on federal lands. The current mix of stand ages range 

from recent clear-cuts to 300 years, with average stand ages of 46 years on PNIF, 41 years on 

PIF, and 62 years on BLM lands. Douglas-fir is by far the most common species in the PCW, 

with other dominant species including (in order of prevalence) bigleaf maple (Acer 

macrophyllum Pursh), red alder (Alnus rubra Bong.), Western hemlock, Western redcedar 

(Thuja plicata Donn ex D. Don), Oregon white oak (Quercus garryana Douglas ex Hook.), and 

grand fir (Abies grandis (Douglas ex D. Don) Lindl.). The major stand-replacing disturbance in 

the landscape is timber harvest, with large wildfires occurring on a long rotation interval. Wind 

throw and fungal diseases such as root rot (Phellinus weirii) and Swiss needle cast 

(Phaeocryptopus gaeumannii) can cause mortality and slow growth, but are less prevalent on the 

eastern slope of the Coast Range, where the PCW is located.  
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We used the LANDIS-II forest simulation model (Scheller et al., 2007) to project landscape-

scale forest dynamics on a 1 ha grid from 2010-2100. LANDIS-II is a process-based simulation 

model that represents forest communities as tree species-age cohorts within gridded cells across 

the landscape. LANDIS-II simulates cohort growth, mortality and regeneration, as dictated by 

life history and physiological attributes. Species compete for resources within each cell, and 

disperse spatially across cells within a simulated landscape, therefore allowing for shifts in 

species ranges. LANDIS-II is freely available on the web (www.landis-ii.org), and operates as a 

core module interacting with extensions, each simulating succession, disturbances, and/or 

management. We used two extensions for this study: the Century Succession extension and the 

Leaf Biomass Harvest extension. 

The Century Succession extension (Scheller et al., 2011) was derived from the CENTURY Soil 

Organic Matter model (Parton et al., 1983). In addition to simulating growth, mortality, 

regeneration and competition (as described above), it estimates above- and belowground net 

primary production (NPP), net ecosystem exchange (NEE), multiple pools of live and dead tree 

biomass (including leaf, wood, fine root, coarse root, coarse woody debris) and active, passive 

and slow pools of soil organic matter (Parton et al., 1983). The extension incorporates monthly 

temperature and precipitation data that, along with other inputs (e.g., soil texture), influence soil 

water content and nitrogen available for tree growth. The model does not operate at the 

photosynthetic level but rather simulates growth and competition as dictated by limitations 

imposed by temperature, water, nitrogen, leaf area, and growing space. As stands age, cohorts 
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CO2 fertilization effects. 

We used Century extension version 3.1.1, in which we made several model adjustments to 

simulate forests with large trees, productive soils, and high levels of carbon storage. We 

increased the range of many inputs (e.g., soil organic matter) and reduced the minimum 

allowable leaf:wood ratio. We also modified nitrogen retranslocation for conifers so that they 

could utilize resorbed nitrogen throughout the year, not just during spring leaf flush. These 

alterations represent an improved version of the Century Succession extension that is more 

suitable for the Pacific Northwest and other temperate coniferous ecosystems. 

We used the Leaf Biomass Harvest extension version 2.0.2 (Syphard et al., 2011) to simulate 

conventional and bioenergy harvest. This extension is based on the Base Harvest extension 

(Gustafson et al., 2000), simulating a wide variety of harvest prescriptions and allowing the user 

to specify the amount of woody and leaf material removed from a site. 

Model Inputs 

Inputs to the LANDIS-II model include initial vegetation data, ecoregion inputs, species and 

functional group traits, management inputs, and climate data. See Tables S1-10 for the Century 

extension parameter values and data sources. 
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To initialize the simulated landscape with current vegetation information, we used the gradient 

nearest neighbor (GNN) map for the Oregon Coast Range (map region 223) produced by the 

Landscape Ecology, Modeling, Mapping and Analysis group for Northwest Forest Plan 

Effectiveness Monitoring (Ohmann & Gregory, 2002). The GNN method imputes forest 

inventory plot data to every pixel in the map, characterizing tree species composition, age 

structure, and many other variables. Inventory plots came from a variety of sources, including 

the Forest Service Forest Inventory and Analysis (FIA) and Current Vegetation Survey (CVS) 

programs. From the supplemental TREE_LIVE database we obtained age information for each 

individual tree within the imputed forest inventory plots and summarized each plot into species-

age cohorts at 10-year age intervals, up to the maximum longevity age for each species. 

Ecoregion Parameters 

LANDIS-II divides the study area into ecoregions, each of which are assumed to have 

homogeneous soils and climate. We defined nine ecoregions in the PCW, including three climate 

regions that captured the precipitation gradient from west (170 cm average annual precipitation) 

to east (111 cm average annual precipitation), and three soil regions, ranging from high soil 

organic carbon (SOC) (271 Mg C/ha) to low SOC (135 Mg C/ha). We defined climate regions 

based on precipitation grids from the PRISM Group (Daly et al., 1997) and soil regions based on 

the SSURGO National Soil Survey for Yamhill County (Soil Survey Staff, accessed April 5, 

2013). Ecoregion parameters included soil properties such as percent clay and sand, SOC 

decomposition rates, drainage class, as well as initial pools of carbon and nitrogen. We computed 

soil parameters as a spatially-weighted average to 1m soil depth. Percent clay, percent sand, field 

This article is protected by copyright. All rights reserved. 



 

  

  

 

 

 

  

 

 

  

 

 

 

capacity and drainage class were derived directly from the SSURGO database, and wilting point 
A

cc
ep

te
d

 A
rt

ic
le


 
was calculated as field capacity minus available water content. We based initial SOC and soil 

organic nitrogen pools on data from soil pits collected throughout the PCW (M.G. Johnson et al., 

manuscript in preparation). Nitrogen inputs were assumed to come from wet and dry deposition, 

biological fixation in lichens, soil, and decaying logs (Fenn et al., 2003, Johnson et al., 1982, 

Sollins et al., 1980, Zhang et al., 2012), and fertilization in managed forests. All nitrogen inputs 

averaged roughly 13 kg N/ha. All ecoregion parameter values and sources are listed in Tables 

S1-S10. 

Species and Functional Group Parameters 

We simulated seven tree species, listed in the Study Area section, but did not simulate any shrub 

or understory species. The seven simulated species were grouped into four functional groups: 

conifer-dry (Douglas-fir and grand fir), conifer-mesic (western hemlock and western redcedar), 

deciduous-dry (Oregon white oak), and deciduous-mesic (red alder and bigleaf maple). All 

species and functional group parameter values and sources are listed in Tables S1-S10. 

Management Data 

Spatial management inputs included a map of management areas (Figure 1) and a stand map. The 

management area map came from the Integrated Landscape Assessment Project (accessed via 

http://westernlandscapesexplorer.info/AccessILAPDataMapsModelsandAnalyses#GIS). Within 

the PCW, 44% was managed as PNIF, 39% as PIF, and 18% was managed as by the BLM as an 

Adaptive Management Area. The PNIF management area was further divided into PNIF-

harvested and PNIF-reserve based on surveys by Johnson et al. (1999). In the survey, 75% of the 
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 PNIF respondents indicated that timber harvest was important or very important. We randomly 

selected 25% of the stands (see below) within the PNIF management area, where we excluded 

harvest to represent PNIF landowners that do not intend to harvest timber on their lands. 

Forest stand maps for BLM lands were downloaded from the BLM Oregon/Washington Data 

Library (accessed via http://www.blm.gov/or/gis/data.php) and converted to raster format. Stand 

maps were unavailable for private land, and therefore we developed a stand map by classifying 

the current vegetation map into age groups, and iteratively performing majority filter and 

boundary clean operations in ArcGIS 10.1 to group stands by age classes, remove very small 

stands and aggregate to observed stand sizes based on surveys (Briggs, 2007, Johnson et al., 

1999). In the final stand map, average stand size was 7 ha in PNIF, 13 ha in PIF, and 7 ha on 

BLM lands. 

Inputs for the individual harvest prescriptions included: method for selecting stands for harvest 

(random for all treatments except BLM thinning, in which the oldest stands within the allowable 

age range were harvested first); degree of removal (total removal [clear-cut] or percentage of 

each species-age cohort removed for thinnings); percent harvested per 10-year time step 

(rotation); species selected for harvest; and species planted following harvest. For all thinning 

treatments we assumed that 60% of the carbon in the specified cohort age range was removed 

(unpublished BLM data). All species were harvested except Oregon white oak. When a stand 

was selected for harvest, all cells within the stand were harvested as allowed by the specific 

prescription parameters. See Management Scenarios section and Table 1 for information about 

the harvest regime in each ownership and management scenario. 
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The Century Succession extension requires monthly temperature and precipitation data for model 

spin-up (simulating forest succession and carbon accumulation up to 2009) and future 

projections (years 2010-2100). We obtained climate data from the US Geological Survey 

GeoData Portal (http://cida.usgs.gov/gdp/) as an area-weighted average for each climate region. 

For model spin-up, we used climate data from the Parameter-elevation Relationships on 

Independent Slopes Model (PRISM) (Daly et al., 1997) over the period from 1950-2009. See 

Climate Scenarios section, below, for information about future climate projections. 

Scenarios 

We developed a suite of scenarios in a factorial design in which we ran all combinations of seven 

management scenarios and seven climate projections, for a total of 49 scenarios. 

Management Scenarios 

The seven management scenarios included no harvest, three harvest rotations (current, 

accelerated, and industrial) and two harvest intensities (conventional harvest and bioenergy 

harvest). Each ownership type had an individual harvest regime under each scenario as described 

in Table 1. See Management Data for details about the harvest parameters. 

Climate Scenarios 

The seven climate scenarios included continuing current climate and six models of climate 

change. Projections under current climate used PRISM data (Daly et al., 1997) from 1950-2009. 

Climate change projections came from the Coupled Model Intercomparison Project Phase 5 
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Fifth Assessment Report (Taylor et al., 2012). We obtained 800m downscaled climate data from 

the NEX-DCP30 (Climate Analytics Group and NASA Ames Research Center) dataset 

(Thrasher et al., 2013) for three global circulation models (GCMs) and two greenhouse gas 

forcing scenarios, called representative concentration pathways (RCPs). We selected GCMs of 

future climate change using two criteria: 1) GCMs that were ranked in the top 11 in an 

assessment of the performance of GCM historical projections compared to observed climate data 

for the Pacific Northwest (Rupp et al., 2013); and 2) GCMs that spanned a wide range of 

projected future annual temperature and precipitation for the Pacific Northwest (Table 2). The 

GCMs chosen were: CanESM2 (Canadian Centre for Climate Modeling and Analysis), 

projecting hotter and wetter future conditions; CCSM4 (National Center of Atmospheric 

Research), projecting warmer future conditions with similar precipitation; and HadGEM2 (Met 

Office Hadley Center), projecting hotter and drier future conditions. For each GCM, we used two 

RCPs representing varying levels of greenhouse gas forcing, including a low forcing scenario 

(RCP 4.5) and a high forcing scenario (RCP 8.5). 

Data Assimilation and Model Calibration 

Literature and data were used to calibrate the Century extension for the PCW. We completed a 

literature review of Pacific Northwest forests to determine expected patterns of growth, carbon 

accumulation, and NEE with species composition, site type, and stand age (Acker et al., 2002, 

Campbell et al., 2004, Harcombe et al., 1990, Harmon et al., 2004, Hudiburg et al., 2009, 

Humphreys et al., 2006, Janisch & Harmon, 2002, Krishnan et al., 2009, Raymond & McKenzie, 

2013, Runyon et al., 1994, Smithwick et al., 2002, Sun et al., 2004, Vogt, 1991). To calibrate the 
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shape parameters for temperature response and moisture sensitivity) to match patterns of growth 

and NEE in literature and flux towers (Falk et al., 2008, Thomas et al., 2013). Then we 

calibrated other parameters (e.g., SOC decay rates for each soil pool) across the whole PCW to 

ensure that starting conditions matched input data and landscape-scale processes were adequately 

simulated. We used carbon estimates from the GNN maps (derived using the Component Ratio 

Method) to calibrate our initial aboveground carbon from model spin-up (Figure 2). The 

following criteria were used to ensure that the final calibration was adequate: 1) initial 

aboveground carbon was within 10% of GNN estimates across all ecoregions (Figure 2); 2) 

projected aboveground carbon and aboveground NPP was within the range of values and 

followed trends found in the literature at each stand age; and 3) initial SOC was within 10% of 

measured values and SOC accumulated 5-15% in all SOC pools over 90 years without harvest. 

Simulation Model Runs 

We simulated 10-year time steps for years 2010-2100. Each scenario was replicated five times to 

account for stochastic variability in climate and seedling establishment. Raw values were output 

by ecoregion and reported values were weighted by area. Due to the large number of scenarios, 

we combined the climate change projections into three categories for graphical purposes: current 

climate, low forcing climate change (all three GCMs under the RCP 4.5 forcing scenario) and 

high forcing climate change (all three GCMs under the RCP 8.5 forcing scenario). 
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Management 

At the initiation of the simulations, total ecosystem carbon was 500 Mg C/ha, with 27% in 

aboveground live biomass, 47% in mineral soil, and 7% in aboveground detritus (woody debris 

and litter). Belowground live and dead biomass encompassed 14% and 5% of total ecosystem 

carbon, respectively (not reported separately). Without any harvest, projected ecosystem carbon 

storage in forests of the PCW increased by 224 Mg C/ha (45%), storing up to 724 Mg C/ha in the 

PCW by the end of the century (Figure 3a). Current harvest rates slightly increased ecosystem 

carbon storage (10 Mg C/ha [2%]), and accelerated harvest slightly decreased ecosystem carbon 

storage (18 Mg C/ha [4%]). In the industrial scenario, where clear-cutting was prescribed across 

the entire watershed, landscape carbon declined by 80 Mg C/ha (16%). Under current harvest 

rates, a total of 186 Mg C/ha was removed as harvested material over the 90-year simulation, 

under the accelerated harvest scenario a total of 209 Mg C/ha was removed, and under the 

industrial scenario 265 Mg C/ha total was removed. 

Most of the variation among management scenarios was due to projected differences in 

aboveground live carbon, which ranged from an increase of 111 Mg C/ha (82%) under no 

harvest to a decrease of 68 Mg C/ha (50%) under industrial harvest (Figure 3b). Soil carbon 

accumulated slowly (total increase of 15-26 Mg C/ha [6-11%] over 90 years) in all management 

scenarios, showing little response to harvest rate except for a slightly faster accumulation in the 

early years of the simulation followed by a leveling off late-century, under the harvested 

scenarios (Figure 3c). Aboveground detrital carbon increased by 9 Mg C/ha (25%) without 

harvest but declined under all harvest scenarios, with greater declines as harvest rate and 
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(Figure 3d). 

Compared to conventional harvest, bioenergy harvest reduced total ecosystem carbon by 10-12 

Mg C/ha (2-3%) at the end of the century (Figure 3a). Aboveground live carbon was unaffected 

by harvest intensity, but bioenergy harvest caused slower soil carbon accumulation (6-8 Mg C/ha 

[2-3%] lower levels than conventional harvest) and declines in aboveground detritus (4-6 Mg 

C/ha [11-17%] decrease relative to conventional harvest) (Figure 3b-d). For both of these pools, 

the impact of bioenergy increased with harvest rate (i.e., the difference between conventional and 

bioenergy harvest increased from current to accelerated to industrial harvest rates). 

Climate Change 

Carbon continued to accumulate under all climate projections until the end of the century without 

harvest, though climate change slowed ecosystem carbon accumulation by 38 Mg C/ha (8%) at 

the end of the century, compared to current climate (Figure 4a). Projected climate change 

lowered aboveground live carbon by 6-10 Mg C/ha (4-7%), lowered soil carbon by 12 Mg C/ha 

(5%) and reduced detrital carbon by 7-9 Mg C/ha (13-16%), relative to current climate with no 

harvest (Figure 4b-d). High climate forcing led to slightly greater reductions in carbon storage 

than low forcing, but there was high overlap and more variation among GCMs than among 

forcing scenarios. 
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change to better understand the physiological limitations experienced by trees under projected 

climate change. We examined monthly growth limitations from water and temperature (note that 

there are other growth limitations in the model not discussed here). By the end of the century, 

rising temperatures in both summer and winter under all climate change scenarios resulted in a 

lower temperature limitation and higher growth in winter, spring, and fall months (Figure 5). 

Conversely, in summer months, increasing limitation from high temperatures combined with 

water stress reduced summer growth. GCMs varied substantially (Table 2) in the degree of 

temperature and water limitation, ranging from relatively small changes (CCSM4) to high 

summer water limitation (HadGEM) and high temperature and water limitation (CanESM). 

Management – Climate Change Interactions 

Interactions between management and climate change indicated a lower impact of climate 

change under harvested scenarios (Figure S1). Although aboveground carbon decreased slightly 

(6-10 Mg C/ha) under climate change without harvest, it actually increased by a similar amount 

(6-12 Mg C/ha [6-18%]) under the six harvested scenarios, relative to current climate. The 

impacts of climate change on soil and detrital carbon did not change sign, but climate change 

appeared to have a lower impact without harvest. For instance, under the no harvest scenario, soil 

carbon was reduced by 12 Mg C/ha under climate change relative to current climate, whereas 

soil carbon declined by only 2-3 Mg C/ha (1%) with climate change under the industrial harvest 

scenario. Similarly for detrital carbon, climate change caused a decline of 7-9 Mg C/ha relative 

to no climate change without harvest, but was nearly the same under the industrial harvest 

scenario. Taken together, the overall decline in ecosystem carbon accumulation with climate 
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change projected under no harvest (Figure 4a) disappeared in the harvested scenarios, and even 
A

cc
ep

te
d

 A
rt

ic
le


 
slightly reversed (increase of 10 Mg C/ha [2%]) in the industrial harvest scenarios. 

Discussion 

Many questions related to sustainability in forested landscapes require information about 

complex, interacting processes over long time frames. Evaluating the comparative effects of 

multiple harvest practices has important implications for long-term forest management, 

particularly when anticipating climate change (Thompson et al., 2012). In this study, we used a 

simulation model to explore 49 scenarios to bracket a large range of potential future conditions 

and asses their implications for forest carbon storage. We simulated varying management 

practices in a heterogeneous watershed, encompassing an intermixture of ownership types with 

very different management strategies. These variations in management practices had important 

implications for carbon storage, as the balance of harvested timberlands and lightly or un­

harvested areas determined whether carbon would accumulate, decline, or maintain current 

levels across the landscape. 

Management 

The management scenarios considered in this study varied widely, ranging from managing for 

maximum carbon storage (no harvest) to industrial harvest across all lands (industrial scenario), 

with multiple scenarios in between. Ownership patterns in the Coast Range are a mosaic of 

federal and private land, currently managed very differently due to restrictions placed on federal 

lands resulting from the Northwest Forest Plan. The current and accelerated harvest scenarios 

reflect this heterogeneity in management across the PCW, and projections of ecosystem carbon 
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likely to maintain levels of carbon storage similar to those currently found in these forests. 

However, under the industrial scenario, carbon storage declined relative to current levels. In the 

industrial scenario, the entire watershed was harvested similar to PIF, with an additional 29% of 

the landscape available for timber harvest that was un-harvested or lightly harvested in the other 

scenarios. Our findings suggest that federal lands and other non-industrial private lands provide 

an important counter-balance to intensive industrial forestry in Coast Range forests. If enough 

lightly harvested or un-harvested land remains on the landscape, carbon storage can be 

maintained even with intensive private industrial management practiced on some lands. 

However, if there were major changes to federal forest policy or if more private non-industrial 

landowners were to start harvesting for timber, forest ecosystem carbon storage may decline. 

Harvest rate (current, accelerated, and industrial) had the expected impact on aboveground 

carbon; as more trees were removed, aboveground carbon declined. In contrast, harvest rate had 

little effect on soils, the largest carbon pool in the PCW and many other heavily managed forests 

in the Pacific Northwest. Projected soil carbon increased slowly over time under all scenarios, as 

organic material from plant biomass accumulated in soils (Kelly et al., 1997). Soil carbon 

initially increased at a slightly higher rate under harvested scenarios, as roots from harvested 

trees began to decompose and contribute to SOC, but leveled off later in the century. Although 

an increase in soil carbon with harvest may be counterintuitive, it is not unexpected, as reviews 

have shown that harvest impacts on soil carbon can be positive, neutral, or negative (Johnson & 

Curtis, 2001, Nave et al., 2010). This pattern is also consistent with some studies that found 

increases in SOC with harvest of coniferous species (Johnson & Curtis, 2001). Increasing harvest 
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literature (Johnson & Curtis, 2001, Nave et al., 2010). Because soil carbon represents such a 

large carbon pool and is relatively resilient to management impacts, the stable soil carbon pool 

buffers the overall impact of harvest on total ecosystem carbon. 

Our simulations suggest residue harvest for bioenergy (changing harvest intensity) would likely 

have little additional effect on total ecosystem carbon storage, although it does reduce soil and 

detrital carbon storage compared to conventional harvest. Also, although impacts of bioenergy 

were small, they appeared to increase with faster harvest rotation, indicating that there might be 

more concern about the sustainability of bioenergy harvest in the most frequently harvested 

plantations. Some studies in the Pacific Northwest have found that bioenergy harvest does not 

reduce forest productivity or SOC (Holub et al., 2013, Knight, 2013), but others document 

negative impacts (Proe & Dutch, 1994, Wall, 2012, Walmsley et al., 2009). Our results were not 

sensitive to the amount of residue harvested, as simulations varying levels of wood and leaf 

removal up to 100% of all plant material (data not shown) showed similar impacts. However, we 

did not simulate other nutrients besides nitrogen, and repeated bioenergy harvest could make 

other soil nutrients such as calcium, phosphorus, or potassium limiting in the long-term 

(Thiffault et al., 2011). In reality, bioenergy harvest can vary widely in intensity, from removal 

of tops only with branch and leaves left on site, to whole-tree harvest, to complete removal 

including stumps. These various bioenergy practices can have very different ecosystem impacts. 

Our simulations under conventional harvest assume that most of the detrital material is left on 

site, even though site preparation can remove much of the detrital material prior to replanting. 
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 Therefore, in some cases, conventional harvesting may actually have site impacts more similar to 

bioenergy harvest. 

In this study, we only report the ecosystem impacts of harvest, and did not attempt to quantify 

the overall climate change feedbacks associated with conventional or bioenergy harvest. For 

instance, we do not quantify emissions from transportation of wood products, conversion of 

harvest residue to usable energy sources, ability to substitute for fossil fuels as an energy source, 

and many other considerations needed to determine the full implications of bioenergy harvest. It 

is also important to note that some of the carbon conventionally harvested in the landscape is 

used in long-lived structures (e.g., buildings) and can provide long-term carbon storage off-site. 

Many researchers have evaluated the full carbon cycle implications of bioenergy harvest in 

mitigating climate change, and its impacts on forested landscapes throughout the world (e.g., de 

Jong et al., 2007, Kaul et al., 2010, Mika & Keeton, 2013, Winford & Gaither, 2012, Zanchi et 

al., 2012). Recent studies in the Pacific Northwest indicate that bioenergy harvest is unlikely to 

offset greenhouse gas emissions as a climate change mitigation strategy (Hudiburg et al., 2011, 

Hudiburg et al., 2013b, Mitchell et al., 2012, Schulze et al., 2012), but impacts likely vary 

regionally (Winford & Gaither, 2012). There remains interest in forest bioenergy production as 

part of a climate change mitigation strategy across the United States and other parts of the world 

(U.S. Department of Energy, 2011, IPCC, 2014). 

Climate Change 

Climate change is expected to have major consequences for forested ecosystems over the next 

century (Bonan, 2008, IPCC, 2014, Vose et al., 2012). In the Pacific Northwest, expected 
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disturbance frequency (Mote et al., 2014). Our simulations indicate that climate change may 

slightly lower carbon storage potential in the PCW, mostly driven by losses of soil and detrital 

material to heterotrophic respiration. However, the balance of production and respiration varied 

among management scenarios, and scenarios with timber harvest tended to sustain lower 

respiration-related carbon losses. Studies have shown that surficial soil respiration increases with 

soil warming (Rustad et al., 2001), but the responsiveness of resistant soil organic matter to 

temperature is still unclear (Davidson & Janssens, 2006).  

All climate models projected higher annual temperatures by the end of the century, with winter 

minimum temperatures rising 2.3-6.1°C and summer maximum temperatures increasing by 3.4­

9.7°C (Table 2). All climate models also projected greater winter precipitation in the PCW, 

although projections of summer precipitation varied from drier to wetter depending on the 

climate model. Warming temperatures resulted in a longer growing season for coniferous species 

that retain leaves throughout the year and are currently limited primarily by temperature in the 

winter, early spring and late fall. However, increasing cool-season productivity was 

counterbalanced by declining production in the summer due to heat and drought stress (Figure 

5), as predicted in other studies of Pacific Northwest conifers (Beedlow et al., 2013, Chmura et 

al., 2011, Littell et al., 2008). The climate scenarios with the greatest increases in winter 

production also showed the greatest productivity declines in summer months, with the result of 

largely canceling out variation among climate scenarios. Therefore, annual levels of 

aboveground live carbon and productivity were affected very little by climate change. 
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The greatest impacts of climate change in Pacific Northwest forests may be from increasing 

disturbance frequency and intensity (Chmura et al., 2011, Raymond & McKenzie, 2012), which 

we did not simulate in this study. Wildfire frequency is expected to increase with climate change 

(Littell et al., 2010, Raymond & McKenzie, 2012, Rogers et al., 2011), and may interact with 

other disturbances (e.g., insects and disease) to shape future forests in the region. Additionally, 

many Pacific Northwest conifers, including Douglas-fir and western hemlock, require winter 

chilling for normal bud burst and growth. Increasing winter temperatures under climate change 

may not provide enough cold days for continued normal growth, flowering and seed germination 

(Chmura et al., 2011, Cumming & Burton, 1996), but we were not able to model this effect. We 

also did not simulate CO2 fertilization, which will likely increase production under climate 

change due to increased photosynthetic rates and water use efficiency (Coops & Waring, 2001, 

Hudiburg et al., 2013b, Keenan et al., 2013, Norby et al., 2005). Therefore, we may be 

underestimating production under elevated atmospheric [CO2] with climate change, although at 

least one experimental study found no significant effect of rising atmospheric [CO2] on Douglas-

fir growth (Olszyk et al., 1998). 

Uncertainty and Model Limitations 

There are many sources of uncertainty in simulation modeling, beginning with uncertainty in 

model parameters and assumptions. The Century Succession extension simulates a wide range of 

processes and therefore requires a large number of input parameters. Due to the rich history of 

ecological studies in Pacific Northwest forests, we were able to obtain field-based data for many 

parameters (Tables S1-S10). However, some values were not available in the literature and 

This article is protected by copyright. All rights reserved. 



 

  

  

 

 

 

 

 

  

 

 

 

 

 

  

  

   

others had a wide range of variability in their estimates. Additionally, projections of climate 
A

cc
ep

te
d

 A
rt

ic
le


 
change are inherently uncertain in many ways, including uncertainty about greenhouse gas 

emissions levels, the climate forcing resulting from those emissions, localized climatic effects 

resulting from global patterns, and the impacts of changing climatic conditions on individual 

species and interspecific interactions (Knutti & Sedlacek, 2013). We intentionally chose several 

climate models to encompass much of the likely range of future climate conditions in the Coast 

Range, but the range of actual uncertainty is much higher than is captured in our projections. 

Calibration is another major challenge with the use of simulation models, as few data sources are 

generally available for calibration, and variability and uncertainty in available data sets are often 

high. We used a set of criteria to ensure that model calibration was adequate (see Data 

Assimilation and Calibration), but our simulations highlighted areas for potential improvement in 

the LANDIS-II Century Succession extension. The model tended to underestimate summer 

productivity and heterotrophic respiration, appearing to be overly sensitive to the dry summers 

experienced in the Pacific Northwest and underestimating soil water holding capacity. This 

appears to be a common limitation among multiple simulation models used in the Pacific 

Northwest (Hudiburg et al., 2013a, Schaefer et al., 2012). However, our aim was to adequately 

simulate processes over long time frames and compare outcomes of multiple scenarios, rather 

than precisely predict seasonal patterns. The LANDIS-II model also simplifies the modeling of 

management activities to harvest practices that affect entire species-age cohorts. Although we 

can model a wide range of silvicultural practices and species-specific management activities, we 

cannot simulate more subtle changes in silviculture, such as retention of individual trees or 

snags, which can be important for wildlife habitat. 
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In this study, we used a simulation modeling framework to explore a wide range of future 

management actions and climatic conditions across a multi-ownership watershed. Our results 

indicate that maintenance of current carbon storage levels are possible under current practices 

partially due to un-harvested federal and non-industrial private lands that counterbalance 

intensive forestry operations practiced on private industrial lands. We also find that the 

ecosystem impacts of bioenergy harvest are likely to be minor, suggesting that bioenergy could 

potentially provide a low impact, renewable energy source in the region if markets and 

processing facilities become available. Soils contained the largest reservoir of carbon in the PCW 

and were relatively resilient to the impacts of harvest, although carbon accumulation in soils 

slowed under climate change due to increasing heterotrophic respiration. Overall, management 

impacts were more influential on landscape condition than climate change, which caused 

relatively small declines in carbon accumulation in some pools. However, indirect effects of 

climate change, such as changes to disturbance regimes (e.g., increases in wildfire) warrant 

further study across larger landscapes. 
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Supporting Information Legends 

Supporting Information Tables S1-S10. Model Parameters and Data Sources. 

Figure S1. Interactive effects of management and climate scenarios on major ecosystem carbon 

pools. Projections are shown for current climate (left), and three global circulation models 

(GCMs) under a low forcing scenario (RCP 4.5, middle) and high forcing scenario (RCP 8.5, 

right). 
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Tables 

Scenario Name Harvest Rotation Harvest Intensity 
No Harvest No harvest on all lands. No harvest on all lands. 

PIF: Clear-cut on a 50 year rotation, with planting 

Current– 
Conventional 
(business as 
usual) 

of Douglas-fir following harvest (Briggs, 2007). 
PNIF: 25% of stands reserved without any harvest 
(Johnson et al., 1999); 75% of stands thinned at 20­
40 years and clear-cut on a 60 year rotation. BLM: 
commercial thinning at 40-80 years on a 100 year 

Removed 80% of wood 
(Zhou & Hemstrom, 
2009); remaining 20% 
of wood and all leaves 
left on site. 

harvest schedule; no harvest in stands >80 years. 
Current– 
Bioenergy 

Same as Current–Conventional. 
Removed 96% of wood 
and 80% of leaves. 

PIF: Clear-cut on a 40 year rotation, with planting 
of Douglas-fir following harvest. PNIF: 25% of 

Accelerated– 
Conventional 

stands reserved without any harvest; 75% of stands 
thinned at 20-40 years and clear-cut on a 50 year 
rotation. BLM: commercial thinning at 40-100 years 

Same as Current– 
Conventional. 

on a 60 year harvest schedule; no harvest in stands 
>160 years. 

Accelerated– 
Bioenergy 

Same as Accelerated–Conventional. 
Same as Current– 
Bioenergy. 

Industrial– 
Conventional 

All lands (PIF, PNIF, BLM) harvested with clear­
cut on a 50 year rotation, with planting of Douglas-
fir following harvest. 

Same as Current– 
Conventional. 

Industrial– 
Bioenergy 

Same as Industrial–Conventional. 
Same as Current– 
Bioenergy. 

Table 1. Description of the seven management scenarios modeled in the Panther Creek 

watershed by ownership category, where applicable. Ownership categories are PIF (private 

industrial forest), PNIF (private non-industrial forest), and BLM (Bureau of Land Management). 
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row) and six climate change scenarios for the Panther Creek watershed projected at the end of 

the century (2091-2100). Future climate projections are comprised of a global circulation model 

(CCSM4, HadGEM, and CanESM) and a representative concentration pathway (4.5 [low 

forcing] and 8.5 [high forcing]). Values are shown annually and for winter months (December, 

January and February) and summer months (June, July and August). Tmax values report 

maximum monthly temperature (°C) averaged across years, Tmin values are minimum monthly 

temperature (°C) averaged across years, and Ppt is total precipitation (cm) averaged across years. 

Climate 
scenario 

Annual Winter months Summer months 
Tmax Tmin Ppt Tmax Tmin Ppt Tmax Tmin Ppt 

Current 16.6 5.1 135.7 8.2 1.0 63.7 25.3 9.7 6.3
CCSM4-4.5 19.6 8.0 170.9 10.8 3.3 77.1 28.7 13.0 7.2 
CCSM4-8.5 21.0 9.4 169.9 11.5 4.2 77.5 30.4 14.7 8.6 
HadGEM-4.5 20.7 9.4 169.2 12.1 4.9 79.8 29.8 14.3 6.7 
HadGEM-8.5 23.0 11.7 176.8 14.4 7.1 84.0 32.3 16.9 6.1 
CanESM-4.5 20.2 9.0 191.6 11.0 4.2 94.1 30.5 14.5 5.9 
CanESM-8.5 23.5 12.4 197.8 13.4 6.8 105.6 35.0 19.0 7.0 

Figure Legends 

Figure 1. Management area (ownership type) map of the Panther Creek watershed, located in 

northwestern Oregon. White areas indicate lands that are nonforested and were not modeled. 

Figure 2. Aboveground live carbon estimates for each ecoregion in the Panther Creek watershed 

from gradient nearest neighbor (GNN) imputation (year 2006) and LANDIS-II at the initiation of 

simulations (year 2010). Error bars show ±1SD across all cells within each ecoregion. 

Ecoregions are defined based on annual precipitation level (high [HiPpt], medium [MidPpt] and 
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 low [LowPpt]) and soil carbon (high [HiC], medium [MidC], and low [LowC]). See Ecoregions 

section for more detail. 

Figure 3. Change over 90 years in ecosystem carbon pools across seven management scenarios 

under current climate (no climate change). Scenarios are described in Table 1. Panels depict total 

ecosystem carbon (a), aboveground live carbon (b), soil carbon (c), and aboveground detrital 

carbon (d). Note that the y-axis range varies among panels and that the soil carbon y-axis does 

not start at zero. 

Figure 4. Change over 90 years in ecosystem carbon storage across seven climate scenarios 

(grouped into three categories), without harvest. The envelopes depict the mean ± 1SD under 

current climate (gray), three low forcing climate change scenarios (yellow), and three high 

forcing climate change scenarios (pink). Where envelopes overlap colors are blended (e.g., 

overlap between yellow and pink produces orange). Panels depict total ecosystem carbon (a), 

aboveground live carbon (b), soil carbon (c), and aboveground detrital carbon (d). Note that the 

y-axis range varies among panels and that the soil carbon y-axis does not start at zero. 

Figure 5. Monthly temperature and water limitations to tree growth under current climate (left) 

and three climate models under the high forcing (RCP 8.5) climate change scenario (middle and 

right). Growth limit values closer to one indicate that a particular resource is unlimiting, and 

values close to zero indicate a strong limitation. Graphs depict growth limitations at year 2100 

for a mixed species single-cell simulation, averaged across five replicates. 
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