528 research outputs found

    Will current electric vehicle policy lead to cost-effective electrification of passenger car transport?

    No full text
    Encouraged by the falling cost of batteries, electric vehicle (EV) policy today focuses on expediting electrification, paying comparatively little attention to the cost of the particular type of EVs and charging infrastructure deployed. This paper argues that, due to its strong influence on EV innovation paths, EV policy could be better designed if it paid more attention to cost and technology development risk. In particular, using a model that estimates the incremental cost of different EV and infrastructure mixes over the whole passenger car fleet, we find that EV policy with a strong bias towards long-range battery electric vehicles (BEVs) risks leading to higher costs of electrification in the medium term, possibly exceeding the ability of governments to sustain the necessary incentives until battery cost drops sufficiently. We also find that promoting a balanced mix of BEVs and plug-in hybrid electric vehicles (PHEVs) may set the electrification of passenger cars on a lower risk, lower cost path. Examining EV policy in the UK and in California, we find that it is generally not incompatible with achieving balanced mixes of BEVs and PHEVs. However some fine tuning would allow to better balance medium term risks and long term goals

    A digital design process for shell structures

    Get PDF
    Over the last few decades, the design of freeform structures has undergone a radical change: powerful computational tools within parametric environment associated with digital fabrication techniques are pushing the boundaries of architecture towards bold solutions. The present work proposes a digital workflow for a shell in compression. The design process starts with the form-finding phase, which generates a hanging model. Through the interoperability of digital tools within parametric environment, optimization of the shape and structural analysis were carried out in order to investigate its behavior. The resulting surface is subject to tessellation, planarization of its cells that take into account fabrication constrains, and the 3D generation of panels composing the thickness of the structure. In order to accomplish an easier assembly process a hypothesis of a puzzle-like connection system was developed. The whole process provides a guidance for the design of freeform shell by the creation of a “customized” digital workflow implemented by digital fabrication techniques for the realization phase

    Digital Tessellation and Fabrication of the ECHO shell

    Get PDF

    Biomedical aspects of pyridoxal 5 -phosphate availability

    Get PDF
    The biologically active form of vitamin B6, pyridoxal 5'-phosphate (PLP), is a cofactor in over 160 enzyme activities involved in a number of metabolic pathways, including neurotransmitter synthesis and degradation. In humans, PLP is recycled from food and from degraded PLP-dependent enzymes in a salvage pathway requiring the action of pyridoxal kinase, pyridoxine 5'-phosphate oxidase and phosphatases. Once pyridoxal 5'-phosphate is made, it is targeted to the dozens different apoenzymes that need it as a cofactor. The regulation of the salvage pathway and the mechanism of addition of PLP to the apoenzymes are poorly understood and represent a very challenging research field. Severe neurological disorders, such as convulsions and epileptic encephalopathy, result from a reduced availability of pyridoxal 5'-phosphate in the cell, due to inborn errors in the enzymes of the salvage pathway or other metabolisms and to interactions of drugs with PLP or pyridoxal kinase. Multifactorial neurological pathologies, such as autism, schizophrenia, Alzheimer's disease, Parkinson's disease and epilepsy have also been correlated to inadequate intracellular levels of PLP

    A simple and low-power optical limiter for multi-GHz pulse trains

    Get PDF
    We study the limiting-amplification capability of a saturated Semiconductor Optical Amplifier (SOA) followed by an optical band-pass filter. We experimentally demonstrate that this simple optical circuit can be effectively exploited to realize a low-power optical limiter for amplitude-modulated pulse trains at multi-GHz repetition rate. We report very large amplitude-modulation-reduction factors for the case of 20 and 40 GHz pulse trains that are super-imposed with modulating frequencies ranging from 100kHz to several GHz. (C) 2007 Optical Society of America

    A simple and low-power optical limiter for multi-GHz pulse trains

    Get PDF
    We study the limiting-amplification capability of a saturated Semiconductor Optical Amplifier (SOA) followed by an optical band-pass filter. We experimentally demonstrate that this simple optical circuit can be effectively exploited to realize a low-power optical limiter for amplitudemodulated pulse trains at multi-GHz repetition rate. We report very large amplitude-modulation-reduction factors for the case of 20 and 40 GHz pulse trains that are super-imposed with modulating frequencies ranging from 100 kHz to several GHz

    EU polluting emissions: an empirical analysis

    Get PDF
    We provide an empirical study of the evolution of emissions of some specific air pollutants on a panel of EU member states from 1990 to 2000, and we relate observed patterns to macroeconomic performance. The ratio pollution emission to GDP, so-called emission intensity, has decreased over the period considered in most EU member states. However, a non-parametric analysis reveals that the relative positions of different countries in terms of GDP growth and reduction of emissions have remained basically unchanged. More specifically, remarkable differences can be detected between the richest and the poorest EU members notwithstanding. Also, more dispersion in emissions levels can be found in those countries with lower per capita GDP

    The multifaceted role of vitamin b6 in cancer: drosophila as a model system to investigate dna damage

    Get PDF
    A perturbed uptake of micronutrients, such as minerals and vitamins, impacts on different human diseases, including cancer and neurological disorders. Several data converge towards a crucial role played by many micronutrients in genome integrity maintenance and in the establishment of a correct DNA methylation pattern. Failure in the proper accomplishment of these processes accelerates senescence and increases the risk of developing cancer, by promoting the formation of chromosome aberrations and deregulating the expression of oncogenes. Here, the main recent evidence regarding the impact of some B vitamins on DNA damage and cancer is summarized, providing an integrated and updated analysis, mainly centred on vitamin B6. In many cases, it is difficult to finely predict the optimal vitamin rate that is able to protect against DNA damage, as this can be influenced by a given individual's genotype. For this purpose, a precious resort is represented by model organisms which allow limitations imposed by more complex systems to be overcome. In this review, we show that Drosophila can be a useful model to deeply understand mechanisms underlying the relationship between vitamin B6 and genome integrity

    All-optical self-routing of 40 Gb/s DPSK packets

    Get PDF
    We demonstrate a self-routing all-optical circuit for switching 40 Gb/s DPSK packets. In our scheme, an all-optical header processor feeds a set-reset flip-flop that drives a coherent wavelength converter. We report an overall limited power penalty
    corecore