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A perturbed uptake of micronutrients, such asminerals and vitamins, impacts
on different human diseases, including cancer and neurological disorders.
Several data converge towards a crucial role played by many micronutrients
in genome integrity maintenance and in the establishment of a correct
DNAmethylation pattern. Failure in the proper accomplishment of these pro-
cesses accelerates senescence and increases the risk of developing cancer, by
promoting the formation of chromosome aberrations and deregulating the
expression of oncogenes. Here, the main recent evidence regarding the
impact of some B vitamins on DNA damage and cancer is summarized, pro-
viding an integrated and updated analysis, mainly centred on vitamin B6.
In many cases, it is difficult to finely predict the optimal vitamin rate that
is able to protect against DNA damage, as this can be influenced by a given
individual’s genotype. For this purpose, a precious resort is represented by
model organisms which allow limitations imposed by more complex systems
to be overcome. In this review, we show that Drosophila can be a useful model
to deeply understand mechanisms underlying the relationship between vita-
min B6 and genome integrity.
1. Impact of most representative B group vitamins on
DNA damage and cancer: in vitro and in vivo studies

The study of micronutrients is a topic of general interest, due to the impact of min-
erals andvitaminsonhumanhealth.Growingevidence shows that thedeficiencyof
several vitamins causes DNAdamage predisposing to cancer and neurological dis-
eases, but cause–effect relationships in most of the cases are not completely
understood. Many micronutrients work as cofactors or substrates for enzymes
that counteract genotoxinsorare involved inDNAmetabolism, and theirdeficiency
can damage DNA analogously to common carcinogens [1]. Inmany cases, it is dif-
ficult to finely predict the optimal rate of micronutrients that is able to protect
against DNA damage, as this rate can be influenced by the individual’s genotype
[2]. Thus, the need arises to explore in depth the pleiotropic action and the metab-
olism of vitamins, in order to set supportive interventions and personalized cares.

Vitamins B9, B12, B1 and B6 (dietary sources reported in table 1) are the source
of coenzymes that participate in one carbon metabolism, in which 1C units are
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Table 1. Dietary sources and recommended daily allowance for vitamins B1, B6, B9 and B12 (from https://www.ncbi.nlm.nih.gov/books/NBK554545/).

vitamin dietary sources RDA (recommended dietary allowance)

vitamin B1
(thiamine)

found in all foods in moderate amounts: pork, legumes,

enriched and whole grains, cereals, nuts and seeds

1.1 mg day−1 for adult women and 1.2 mg day−1 for adult

men

vitamin B6
(pyridoxine)

widespread among food groups: meat, fish, poultry,

vegetables, fruits

1.3 mg day−1 for adults

vitamin B9
(folic acid)

leafy green vegetables and legumes, liver, seeds, orange

juice, enriched and fortified grains

400 mcg day−1 of dietary folate equivalentsa for adults;

recommendation is that women of childbearing age consume

an additional 400 mcg day−1 of folic acid from supplements

or fortified foods to decrease the risk of neural tube defects

vitamin B12
(cobalamin)

only present in animal products because it is a product of

bacteria synthesis: meat, poultry, fish, seafood, eggs,

milk and milk products; not found in plant foods; many

foods are also fortified with synthetic vitamin B12

2.4 mcg day−1 for adults; it is recommended for older adults to

meet their RDA with fortified foods or supplements because

many are unable to absorb naturally occurring vitamin B12

aDietary folate equivalents (DFE) take into account the lower availability of mixed folates in food compared with synthetic tetrahydrofolate used in food
enrichment and supplements. Currently, the use of DFE is recommended for planning and evaluating the adequacy of people’s folate intake.
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used in biosynthetic processes such as purine and thymidylate
synthesis and homocysteine remethylation (figure 1). Consist-
ently, a large body of evidence shows that deficiency of these
vitamins impacts on genome stability and cancer. Vitamin B9

encompasses a group of compounds collectively named
as folates, including folic acid, tetrahydrofolic acid (THF; or
H4-pteroyl-L-glutamate), 5-methyltetrahydrofolic acid (CH3-
THF) and 5,10-methylenetrahydrofolic acid (CH2-THF),
required for growth and development. Dietary folic acid is
first reduced to dihydrofolate and then to tetrahydrofolate by
the activity of dihydrofolate reductase. Folate deficiency (FD)
causes genome instability as assessed by in vitro studies on
human and animal cell cultures. In particular, FD produces
fragile sites [3], chromosome breakage [4] and aneuploidy
[5]. Cytokinesis-block micronucleus assays in primary human
lymphocyte cultures deprived of folate revealed micronuclei,
which contain chromosomes or chromosome fragments not
incorporated into one of the daughter nuclei during cell div-
ision, nucleoplasmic bridges (a biomarker of dicentric
chromosomes resulting from telomere end-fusions or DNA
misrepair) and nuclear buds (a marker of gene amplification
and/or altered gene dosage) [6].

In vitro observations have been complemented with epide-
miological [7,8] and controlled intervention studies [9–11],
further reinforcing the association between folate and
genome stability. Consistently, a growing body of evidence
indicates that FDmay increase risk for several cancer, including
those of colon, pancreas, prostate and breast [12,13]. To explain
the effects of FD on genome stability, two mechanisms have
been proposed: the impaired conversion of dUMP in dTMP
and the hypomethylation of DNA. Folate is required for con-
version of deoxyuridine monophosphate (dUMP) to
deoxythymidine monophosphate (dTMP) performed by thy-
midylate synthase (TS) (figure 1). Therefore, FD can cause
dUTP incorporation in DNA, instead of dTTP, which is
removed by uracil glycosidase, resulting inmutations, chromo-
some aberrations and eventually cancer. In addition, the
unbalanced dUTP/dTTP ratio can impair DNA synthesis
and repair, increasing genetic instability. As a confirmation of
this model, treatment of human lymphoid cells in culture
with methotrexate, an inhibitor of dihydrofolate reductase,
increases the dUTP/dTTP ratio and the rate of uracil misincor-
poration in DNA [14]. Moreover, in vitro folic acid depletion
causes uracil misincorporation in human lymphocytes [15].

Folate is also required for the production of S-adeno-
sylmethionine (SAM) throughout the remethylation of
homocysteine to methionine (figure 1). In turn, SAM regulates
gene transcription by methylating specific cytosines in DNA.
As a consequence, low folate levels may lead to DNA hypo-
methylation, which can potentially induce proto-oncogenes
expression. An altered methylation pattern has been proposed
to be at the basis of aneuploidy caused by FD.According to this
model, it has been proposed that demethylation of heterochro-
matic centromeric regions could impair the correct distribution
of chromosomes during nuclear division [16]. However, more
recently, it has been proposed that aneuploidy in FD cells
can also result from spindle assembly checkpoint (SAC) dys-
function, due to an altered expression of some SAC genes
induced by FD [17].

Vitamin B12 is essential for maintaining nervous system
functions as well as haematopoiesis [18,19]. Suboptimal B12
status (serum B12<300 pmol l−1) is very common, occurring
in 30–60% of the population, in particular in pregnant women
and in less-developed countries. Vitamin B12, together with
folate, serves as coenzyme for methionine synthase (MS)
(figure 1). When B12 is insufficient, THF is trapped as CH3-
THF. This hinders the regeneration of THF and reduces the
size of the CH2-THF pool, leading to increased dUTPmisincor-
poration into DNA. Reduced MTR activity increases
homocysteine in tissue and plasma, a biomarker associated
with several diseases, including risk of neural tube defects [20].

The first evidence that vitamin B12 deficiency is associated
with chromosome damage in human cells has been the pres-
ence of ‘Howell–Jolly bodies’ in erythrocytes from patients
affected by megaloblastic anaemia (a disease caused by B12

deficiency). Howell–Jolly bodies are small round nuclear rem-
nants caused by chromosome breakage and chromosome
segregation defects, as they contain whole chromosomes or
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Figure 1. Schematic of B9 metabolism comprising the thymidylate cycle (red diagram), the methionine cycle (green diagram) and the purine biosynthesis pathway
(blue diagram). The enzymes involved are: dihydrofolate reductase (DHFR); thymidylate synthase (TS); serine hydroxymethyltransferase (SHMT); methylenetetrahy-
drofolate reductase (MTHFR); methionine synthase (MS); methionine adenosyltransferases (MAT); S-adenosylhomocysteinase (SHase); glycine cleavage system (GCS);
methylenetetrahydrofolate dehydrogenase (MTHFD); 10-formyltetrahydrofolate dehydrogenase (FDH); formyltetrahydrofolate synthetase (FTHFS).
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chromosome fragments that lag behind at anaphase [21]. In line
with these findings, subsequent in vivo and in vitro studies have
associated low B12 levels with increased chromosome damage,
and a significant negative correlation has been demonstrated
between micronucleus index and serum vitamin B12 content
[9,22–24]. Intervention studies showed that DNA damage
andmicronucleus frequency is significantly improved through
vitamin B12 therapy [23,25,26].

Although low B12 levels are also expected to be associated
with cancer, there is only little evidence on this. Indirect evi-
dence come from a study indicating that smokers with low
B12 levels had high rate of micronuclei, suggesting that low
B12 levels could be correlated to epithelial cancers [27]. Another
study suggested that elevated total B12 could be considered as a
potential marker for oncohaematological disorders [28].

The coenzyme active form derivative of vitamin B1 (thia-
mine) is thiamine pyrophosphate (TPP), an essential cofactor
of several key enzymes in cellular metabolism, among which
is transketolase (TKT) within the pentose phosphate pathway
(PPP). Three other phosphorylated forms have been observed
intracellularly in humans in addition to TPP: thiamine mono-
phosphate, thiamine triphosphate and adenosine thiamine
triphosphate [29]. In cancer cells, TKT within the PPP is
responsible for the synthesis of most ribose 5-phosphate
(R5P). In normal cells, R5P is produced through the non-
thiamine-dependent oxidative branch of PPP. If an excess of
R5P is present with respect to cell requirements, it is recycled
into glucose 6-phosphate through the non-oxidative branch
of the PPP, in which TKT is present, where R5P is converted
to fructose 6-phosphate and glyceraldehyde 3-phosphate. In
cancer cells, the large requirement of R5P needed for nucleo-
tide synthesis determines an inversion of the normal
metabolic flux, increasing reliance on the non-oxidative
branch PPP for R5P production [30]. Accordingly, inhibition
of thiamine metabolism is expected to result in the reduction
in the nucleotide pools. The thiamine analogue and anti-
coenzyme oxythiamine was shown to reduce DNA and
RNA synthesis, through reduction in R5P, and therefore
tumour cell growth both in vivo and in vitro [31]. High impor-
tance of thiamine in malignant cells was shown in both
epidemiological [32] and biochemical [33] studies. In
humans, cancer rates correlate with thiamine status [32].
Thiamine depletion of normal tissues due to strong thiamine
mobilization by cancer cells [33] may often cause compli-
cations in cancer patients, such as heart failure [34].

Thiamine and TPP have also been demonstrated to have
antioxidant properties, reacting with ROS [35]. In particular,
TPP has provided a greater protective effect against oxidative
stress-induced damage (i.e. DNA hydroxylation) compared
with thiamine [36].
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Figure 2. Schematic of vitamin B6 metabolism in humans. The orange diagram corresponds to the pyridoxal 50-phosphate salvage pathway. PLP, pyridoxal
5’-phosphate; PNP, pyridoxine 5’-phosphate; PMP, pyridoxamine 5’-phosphate; PL, pyridoxal; PN, pyridoxine; PM, pyridoxamine; PA, 4-pyridoxic acid; PDXK: pyridoxal
kinase; TNSALP: tissue-non-specific alkaline phosphatases; PLPP, pyridoxal 5’-phosphate phosphatase; ALDH, aldehyde dehydrogenases; POX, pyridoxal oxidase;
AOX, aldehyde oxidases.

Table 2. Biological functions of B6 vitamers.

B6 vitamer function reference

PLP and PMP catalysis (enzyme cofactor) [37]

PLP and PN binding to steroid receptors, playing a role in membrane transport [38–40]

all vitamers reactive oxygen species scavenger and resistance factor to biotic and abiotic stress in plants and

in Plasmodium falciparum

[41–44]

PLP virulence factor in Helicobacter pylori, Mycobacterium tuberculosis and Actinobacillus pleuropneumoniae [45–47]

PLP chaperone in enzyme folding [48]

PLP modulator of transcription factors [49,50]

PLP and PMP inhibition of the formation of advanced glycation end products (AGEs) [51–53]
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2. Roles of vitamin B6 in human health
and disease

2.1. Vitamin B6 metabolism in humans
VitaminB6 is anensembleof six substitutedpyridine compounds
or vitamers: pyridoxine (PN), pyridoxal (PL), pyridoxamine
(PM) and their related 50-phosphate derivatives (figure 2). The
catalytically active form of the vitamin, pyridoxal 50-phosphate
(PLP), acts as a cofactor for over 150 enzymes [37] involved in
a number of crucial metabolic pathways, such as the synthesis,
transformation and degradation of amines and amino acids,
supply of one carbon units, transsulfuration, synthesis of
tetrapyrrolic compounds (including haem) and polyamines, bio-
synthesis and degradation of neurotransmitters. Moreover, B6
vitamers are involved in important biological functions other
than catalysis (table 2).

The different B6 vitamers are interconverted through a
salvage pathway that involves pyridoxal kinase (PDXK),
pyridoxine 5’-phosphate oxidase (PNPO) and several phospha-
tases (figure 2). The ATP-dependent PDXK phosphorylates the
50 alcohol group of PN, PL and PM to form PNP, PLP and PMP,
whereas the FMN-dependent PNPO oxidizes PNP and PMP to
give PLP. Tissue-non-specific alkaline phosphatase (TNSALP)
is a lipid-anchored ectophosphatase present on the external
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surface of the cell membrane in several organs such as liver,
bone and kidney. Its physiological role is to dephosphorylate
B6 vitamers so as to allow their transport across the membrane
[54]. On the other hand, an intracellular, cytosolic PLP phospha-
tase exists, which is ubiquitously expressed in humans and is
specifically involved in vitamin B6 catabolism [55].

Another important component of vitamin B6metabolism is
the recently discovered PLP-binding protein (PLP-BP), wide-
spread in all kingdoms of life, with no catalytic activity but
with an important regulatory function in PLP homeostasis
[56]. In fact, PLP is a very reactive aldehyde that easily com-
bines with amino and thiol groups. Therefore, it is important
to maintain a correct balance among B6 vitamers inside the
cell and keep intracellular-free PLP concentration below toxic
levels, but enough to saturate all PLP-dependent enzymes [57].

B6 vitamers are absorbed from food and from the intestinal
microflora. The richest sources of vitamin B6 include fish,
beef liver and other organ meats, potatoes and other starchy
vegetables, and fruit. In animal-derived foods, vitamin B6 is
mainly present as PLP, associated with glycogen phosphoryl-
ase, and in smaller amounts as PMP, while in plants it is
present as PN and PN-50-β-D-glucoside [58]. Once ingested,
PLP, PNP and PMP are dephosphorylated by the ecto-
enzyme TNSALP. PM, PN and PL are absorbed from
the upper small intestine by a carrier-mediated system and
delivered through the portal circulation to the liver. In this
organ, they are converted to PLP through the combined
action of PDXK and PNPO. From the liver, PLP bound to albu-
min and dephosphorylated B6 vitamers reach all tissues
through the blood stream. In order to enter the cells, PLP
needs to be dephosphorylated again by membrane-associated
TNSALP. Membrane transporters of B6 vitamers are yet to be
identified. In the cytoplasm, PL, PN and PM are converted
into the 50-phosphorylated vitamers by PDXK, while PNPO
converts PNP and PMP into PLP [59]. Once made available,
PLP is somehow targeted to the dozens of different apo-B6
enzymes that are being synthesized in the cell. Catabolism of
vitamin B6 consists in the oxidation of PL to 4-pyridoxic
acid by aldehyde oxidase 1 (AOX-1) and NAD-dependent
dehydrogenases [60].

2.2. Effects of vitamin B6 homeostasis imbalance
The recommended dietary allowance of vitamin B6 is less than
2 mg, an amount easily acquired in developed countries
within any diet. PLP concentrations tend to be low in people
with alcohol dependence [61], obese individuals [62] and preg-
nant women [63]. Some pathological conditions are associated
with vitamin B6 deficiency: end-stage renal diseases, chronic
renal insufficiency and other kidney diseases [63]. In addition,
vitamin B6 deficiency can result from malabsorption syn-
dromes, such as celiac disease, inflammatory bowel diseases
including Crohn’s disease and ulcerative colitis [63,64]. Cer-
tain genetic diseases, such as homocystinuria, can also cause
vitamin B6 deficiency [65]. People with rheumatoid arthritis
often have low vitamin B6 concentrations, and vitamin B6 con-
centrations tend to decrease with increased disease severity
[66]. Moreover, the assumption of certain drugs, such as con-
traceptives, and natural compounds may reduce PLP
availability [67,68]. The symptoms of PLP deficiency deter-
mined by the above-mentioned conditions can be reverted
by vitamin B6 supplementation. It is known that vitamin B6

supplements can also reduce the symptoms of premenstrual
syndrome [69], and are used to treat nausea and vomiting in
pregnancy [70] as well as carpal tunnel syndrome [71]. Unfor-
tunately, about 28–36% of the general population uses
supplements containing vitamin B6, even when unnecessary.
It is important to maintain the correct balance of vitamin B6

because several reports indicated that its excess is neurotoxic.
Large doses of vitamin B6 have detrimental effects (when the
intake exceeds 200 mg day−1), mostly evident at the level of
the peripheral nervous system [59].

Importantly, perturbations of PLP homeostasis can also
have genetic origins, determined bymutations in genes encod-
ing proteins involved in vitamin B6 metabolism, and causing
severe neurological conditions (table 3). However, increasing
evidence is accumulating that vitamin B6 deficiency can also
contribute to or be the main cause of the onset of serious dis-
eases such as cancer and diabetes, as will be discussed in the
following paragraphs.
3. Relationships between vitamin B6, DNA
damage and cancer inferred by
epidemiological studies

3.1. Antioxidant properties of vitamin B6
The antioxidant properties of B6 vitamers were first recognized
when it was discovered that the biosynthesis of vitamin B6 is
essential for the resistance of Cercospora nicotianae to singlet-
oxygen-generating phototoxins [41]. The efficient activity of
vitamin B6 in quenching reactive oxygen species (ROS) was
also demonstrated in plants [96]. Reduced levels of vitamin
B6 were associated with severe susceptibility to abiotic stress
(oxidative, salt, drought, UVB) in plants, fungi and yeast
[97]. Several studies demonstrated that the antioxidant proper-
ties of B6 vitamers can derive from their direct involvement in
reactions with ROS [42,98,99]. The strong antioxidant activity
of B6 vitamers originates from the presence of both hydroxyl
(–OH) and amine (–NH2) substituents on the pyridine ring,
which can directly react with the peroxy radicals [100]. The
antioxidant properties of vitamin B6 also have an indirect
cause and are surely linked to its role as enzyme cofactor.
Studies on the radical-mediated oxidative damage in human
whole blood demonstrated a surprising antioxidant activity
of pyridoxine [101]. These observations may be attributed to
the role of PLP as cofactor in the transulfuration pathway, in
which homocysteine is converted to cysteine, a precursor of
glutathione, a key regulator of intracellular redox state. It is
known that vitamin B6 and FD can lead to elevated homo-
cysteine levels, which in turn generate ROS [102]. Also, the
gasotransmitter H2S and taurine, involved in inflammation
and chronic illnesses, derive from sulfur amino acids through
the action of PLP-dependent enzymes [103]. The antioxidant
properties of vitamin B6 are also likely to be connected to its
recognized role as anti-inflammatory agent, although a clear
link between inflammation, B6 status and carcinogenesis has
not yet been established [103]. On the other hand, it has been
demonstrated that B6 vitamers are endogenous photosensiti-
zers that enhance UVA-induced photooxidative stress in
human skin. In particular, PL is the most phototoxic UVA-
activated vitamer, probably because of the excited triplet
state photochemistry associated with its aldehyde group [104].
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3.2. Vitamin B6 availability and cancer risk
The antioxidant properties of vitamin B6 are expected to be
beneficial in terms of cancer prevention and therapy. However,
vitamin B6 supplementation has been found to have controver-
sial effects on tumour insurgence and progression [105]. In the
attempt to interpret such controversial behaviour, it should be
considered that PLP, being involved as cofactor in several bio-
synthetic pathways, is required for cell proliferation. Therefore,
the availability of vitamin B6 is bound to affect oncogenesis
and tumour progression. Under this perspective, until the
early 1980s, restricting vitamin B6 availability was considered
a promising therapeutic approach against cancer [105]. How-
ever, analyses performed on a large number of observations
gave evidence of a strong inverse association between both
vitamin B6 dietary intake and PLP blood levels and cancer
[106,107]. Vitamin B6 deficiency is linked to a clear increase
of several types of tumours, in particular affecting the gastroin-
testinal tract [108,109] and lungs [107]. Therefore, it is clear that
vitamin B6 has a complex andmultifaceted role in cancer, as an
antioxidant preventive agent, but also as an essential micronu-
trient required for cell proliferation. The low vitamin B6 levels
observed in cancer patients may be linked to the increased
biosynthetic requirements of tumour cells and may also be
partially responsible for their decreased immunity.
3.3. Expression of vitamin B6 metabolism genes and
cancer

Referring to the role of vitamin B6 in cell proliferation, there is
very strong evidence of an association between the expression
of genes involved in the recycling of PLP and cancer.

The PNPO gene, encoding pyridoxine 50-phosphate oxi-
dase, is one out of seven genes, selected among 6487, whose
altered expression was found to have a prognostic value in
patients with colorectal cancer, and the expression of PNPO
is increased in colorectal cancer tissues comparedwith adjacent
normal tissues [110]. This is a clear evidence of the involvement
of vitamin B6 metabolism in cancer. Several other evidences
have been reported, showing a link between salvage pathway
enzymes and different kinds of tumours. Zhang et al. [111]
demonstrated that PNPO contributes to the progression of
ovarian surface epithelial tumours. Also in this case, PNPO
was found to be overexpressed, and its knockdown induced
cell apoptosis and decreased cell proliferation, migration and
invasion in vitro. Moreover, silencing of PNPO inhibited
tumour formation in vivo in orthotopically implanted nude
mice. Interestingly, the same work also suggested that PLP is
important for the regulation of PNPO expression, because
PLP supplementation had the effect to suppress PNPO protein
expression, resulting in the inhibition of epithelial ovarian cell
proliferation. Furthermore, PNPO expression was shown to be
regulated by the transforming growth factor-β, probably
through the upregulation of a small RNA (miR-143-3p).
PNPO is overexpressed also in breast invasive ductal carci-
noma, where the expression level is inversely correlated with
the overall survival of patients [112]. Moreover, knockdown
of PNPO results in a decrease of breast cancer cell proliferation,
migration, invasion and colony formation, arrests cell cycle at
the G2/M phase and induces cell apoptosis. Also in this case,
non-coding RNAs (MALAT1 and mir-216b-5p) are involved
in PNPO regulation [112].
PDXK was demonstrated to be upregulated in non-small-
cell lung cancer (NSCLC) [113]. Because the high protein
levels of PDXK in the tumourdidnot correlatewith the amounts
of its mRNA, the authors suggested that PDXK expression is
subjected to a post-translational control. Analogously, PDXK
was recently found to be abundantly expressed in myeloid leu-
kaemia cells, where PDXK depletion has an antiproliferative
effect, which neither PN nor PM was able to rescue [114]. Con-
sistently, pharmacological inhibition of PDXK using isoniazid
or the more specific 40-O-methylpyridoxine (gingkotoxin) has
the same effect as genetic depletion of PDXK, suggesting that
vitamin B6 in plasma supports leukaemia proliferation [114].
On the other hand, it has been demonstrated that PDXK knock-
down in human NSCLC cells protects against the cytotoxic
activity of different agents, in particular the chemotherapy
agent cisplatin, whereas PN administration improved, in a
manner that depends on the presence of PDXK, cisplatin anti-
tumoureffect byexacerbatingDNAdamage. These observations
were attributed to a pharmacokinetic effect of vitamin B6, which
favours the intracellular accumulation of cisplatin [115].

Taken together, these data suggest that the effect of vitamin
B6 on cancer should be examined from different points of view,
according to the particular context that is taken under consider-
ation, such as the protection fromDNAdamage, stimulation of
immune response or cell proliferation (figure 3).
3.4. Impact of vitamin B6 deficiency on DNA
metabolism

Expectedly, vitamin B6 deficiency plays an important role in
DNAdamage and repair. PLP is the cofactor of serine hydroxy-
methyltransferase (SHMT), whose folate-dependent reaction is
themain source of one carbon units inmetabolism, and plays a
fundamental role in the synthesis of thymidylate (figure 1).
PLP deficiency may determine a decrease in activity of
SHMT, thereby causing the misincorporation of uracil in
DNA [116–118]. Another enzyme that depends on both PLP
and folate for its activity, glycine decarboxylase, a subunit of
the glycine cleavage system, is fundamental for the synthesis
of purines and therefore for DNA metabolism [119].

Given the implication of vitamin B6 in DNAmetabolism, it is
not surprising that low vitamin B6 levels have been associated
with the formation of micronuclei in animal models [120]
and in patients affected by inflammatory bowel disease [121].
Vitamin B6 can impact on DNA also through different mechan-
isms. It has been proposed that vitamin B6 suppresses
endothelial cell proliferation and angiogenesis by inhibiting the
activities of DNA polymerase and DNA topoisomerases [122].
In addition, in epatoma cells, PL induces the expression of the
insulin-like growth factor-binding protein 1 via a mechanism
involving theERK/c-Junpathway [123].Moreover, the samevita-
mer was shown to play a role in increasing the expression of p21
via p53 activation in several cancer cells and mouse colon [124].

The proper uptake of vitamins is crucial to maintain
genome stability, but it is important also to take into consider-
ation the impact that an individual’s genotype can have on the
capacity to absorb, transport and metabolize vitamins. This
could affect the intracellular level of vitamin B6, which does
not necessarily correspond to the level and distribution of
plasmatic vitamin B6.

An emerging body of research is focused on understanding
how the genome affects folate metabolism and disease risk.
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The study of common polymorphisms in genes encoding
for proteins required for folate metabolism (e.g. methylenetetra-
hydrofolate reductase (MTHFR; 677C>T), MS (MTR; 2756
A>G)) and uptake (e.g. glutamate carboxypeptidase II
(GCPII; 1561 C>T), reduced folate carrier (RFC; 80 G>A))
revealed altered catalytic activity or expression of these proteins,
suggesting that they can have a critical impact ondevelopmental
or progression of diseases [125,126]. Furthermore, since some of
these enzymes for their function require other dietary cofactors
(e.g. vitamin B2 and B12 are cofactors for MTHFR and MTR,
respectively), it is important to consider not only nutrient-gene
interactions but also interactions of folate with other nutrients.
However, these kinds of studies performed in vitro or through
human genetic screening suffer from the limitations imposed
by these complex systems. To overcome these difficulties, the
genetic approach applied to model organisms represents the
best choice as it allows one to evaluate in whole organisms the
phenotypic consequences elicited by mutations in genes
involved in metabolism of specific vitamins. In this review, we
showhow this approachwas successful inDrosophila, byprovid-
ing novel approaches for determining the molecular
mechanisms correlating micronutrients imbalance and cancer.
4. Drosophila as a model system to study
the effects of B6 depletion

Model organisms offer suitable contexts to study the physio-
pathology of many human diseases by overcoming the
difficulties associated with human research. In this contest,
Drosophila melanogaster has several advantages including an
affordablemaintenance, a short life cycle, a high fecundity, a rela-
tively brief generation time, a well-characterized genome, a
manageable number of chromosomes (consisting in a pair of
sex chromosomes along with three pairs of autosomes) and
the availability of several mutant fly lines. Main metabolic mol-
ecular pathways are well conserved and about 75% of known
human disease genes have related sequences in Drosophila.
Thus, hypotheses and models generated using flies often prove
to be relevant to biomedicine. In the last few years, Drosophila
has been considered a precious model for several metabolic dis-
eases includingdiabetes andhas acquired interest for nutritional
intervention studies. The impacts of diet on lifespan, locomotor
activity, intestinal barrier function and gutmicrobiota, as well as
fertility, have been evaluated in order to investigate diet-induced
pathophysiological mechanisms including inflammation and
stress response [127]. However, so far, only a few papers in the
literature report studies on the role of vitamins in Drosophila.
Bahadorani et al. [128] studied antioxidant and pro-oxidant
properties of vitamin A, C and E to Drosophila lifespan under
normoxia and oxidative stress. Other investigations [129,130]
focusedon the role of flymicrobiota inprovidingessential folates
and vitamin B1 to their host when those are scarce in the diet.
Another study [131] showed that folate supplementation was
able to alleviate mitochondrial dysfunction in a Parkinson fly
model. However, to our knowledge, only vitamin B6 has been
studied in detail in a Drosophila model with the aim to under-
stand cellular and molecular mechanisms at the basis of its
beneficial effect on human diseases [132–135].

4.1. Impact of mutations in PDXK and PNPO genes,
involved in vitamin B6 activation, on genome
stability

Like mammals, Drosophila produces PLP through the salvage
pathway, by recycling precursors from food. In the standard
food where flies grow, vitamin B6 is present in brewer’s yeast,
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which is rich in PM and PN but poor in PL [136]. As a conse-
quence, it is expected that PDXK and PNPO depletion shall
cause similar phenotypes by blocking PLP synthesis.

Molecularmechanisms at the basis of vitamin B6metabolic
functions have been investigated indetail byexaminingpheno-
types elicited by mutations (dPdxk1 and dPdxk2) in PDXK
encoding gene. Cytological analysis revealed 5% of chromo-
some aberrations (CABs) in larval brain cells from dPdxk
mutants (in wild-type brains, CABs frequency ranges from
0.3 to 0.5% [137]). CABs, such as chromatid deletions, isochro-
matid deletions and chromosome exchanges, were completely
rescued by PLP supplementation (1 mM), suggesting that
PLP is important for chromosome integrity maintenance. As
aconfirmationof this,wild-type larvae treatedwithPLP inhibi-
tors, such as 4-deoxypiridoxine (4-DP), cycloserine,
penicyllamine and isoniazid, also displayed high CAB fre-
quency [132]. Interestingly, most of these compounds are
currently used as drugs for several human diseases, such as
depression, arthritis and tuberculosis, which have the side
effect of decreasing PLP levels [65].

In Drosophila, the counterpart of PNPO enzyme is encoded
by Sgll gene [138]. The depletion of this enzyme causes epi-
lepsy in human, Drosophila and zebrafish [139–141]. Silencing
of Sgll by RNA interference produced 3% of CABs, and was
rescued not only by PLP but also by PL supplementation [135].

Data obtained in Drosophila are in line with those obtained
in yeast, in which it has been demonstrated that mutations in
BUD16 gene (the gene encoding PDXK in yeast) induce gross
chromosome rearrangements [142]. Furthermore, also in
human cells, PDXK depletion and 4-DP treatment in mock
cells cause CABs [132] and 53BP1 repair foci [142], confirming
the role of PLP in genome integrity maintenance also in higher
organisms, consistentlywith the presence ofmicronuclei found
in cells with low B6 levels [120,121].
4.2. Mechanisms through which vitamin B6 protects
from DNA damage

Vitamin B6, as well as folate and vitamin B12, are involved in
the one carbon metabolism, a crucial pathway for DNA syn-
thesis and repair (figure 1). In particular, vitamin B6 serves as
coenzyme for the activity of SHMT, which directs one carbon
units towards thymidylate synthesis. HPLC analysis revealed
that dPdxk mutants display increased dUTP/dTTP ratio, but
they do not show increased sensitivity to hydroxyurea (HU),
a drug which interferes with replication process [132]. This
suggests that replication failure is not at the basis of the
CABs in dPdxk mutants. However, as nucleotide imbalance
also affects DNA repair, it is possible that it may contribute
to CABs. By contrast, in yeast, HU dramatically affects the
growth of bud16Δ mutant cells, thus it has been hypothesized
that PLP deficiency triggers DNA lesions due to a nucleotide
imbalance [142].

Studies in Drosophila revealed that hyperglycaemia
induced by low PLP levels might represent another potential
cause of CABs. In fact, besides CABs, dPdxk mutants display
increased glucose content in larval haemolymph in part due
to insulin resistance [132], a metabolic condition at the basis
of type 2 diabetes. Diabetic hallmarks are also evident in
flies fed with 4-DP and in flies depleted of Sgll, which also
exhibit impaired lipid metabolism and small body size, a typi-
cal feature of diabetic flies [133,135]. The hypothesis that high
glucose can produce CABs in low PLP contexts came from two
observations. dPdxk mutants, Sgll-depleted larvae and 4-DP-
fed larvae grown in a medium supplemented with sugars
(sucrose or glucose or fructose) exhibit a further increase in
CABs (ranging from 15 to 60%), differently from wild-type
larvae in which sugar treatment leaves unchanged CAB fre-
quency [132,135]. In addition, dPdxk mutants, Sgll-depleted
flies and 4-DP-fed larvae accumulated high concentrations of
advanced glycation end products (AGEs) in brains
[132,133,135]. In high-glucose conditions, these molecules
originate from non-enzymatic glycation of amino groups of
proteins and DNA and are genotoxic due to ROS formation
[143]. AGEs have been associated with diabetic complications
and are quenched by PLP and PM [51,52]. Interestingly,
α-lipoic acid, a compound able to decrease AGE formation,
rescues not only AGEs but also CABs in brains from dPdxk1

mutants, Sgll-depleted individuals and 4-DP-fed larvae
[132,135]. Taken together, these findings suggested that in
low PLP conditions, CABs are mostly produced by hypergly-
caemia, which in turn promotes AGE accumulation that
causes DNA damage [132,135] (figure 4). Studies on human
cells confirmed this model, as in HeLa cells depleted for
PDXK enzyme glucose treatment increases CABs and lipoic
acid is effective in rescuing them [132]. Interestingly, a com-
bined effect of low vitamin levels and high glucose in
inducing DNA damage has also been found for folates in
human cell lines [144].

As mentioned above, some studies indicated the existence
of a correlation between low PLP levels and cancer. Although
mechanisms behind this association are not clear, it has been
hypothesized that lowPLP levels can impact on cancer through
different mechanisms, for example, by increasing inflam-
mation, decreasing immune defences and promoting genome
instability [105]. The finding obtained in Drosophila not only
confirmed the hypothesis that low PLP levels increase cancer
risk through DNA damage, but also revealed that DNA
damage in PLP-deficient cells can in part be due to AGE
accumulation, which adds to our knowledge of the complex
relationship between vitamin B6 and cancer.
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4.3. Vitamin B6 as a potential link between diabetes
and cancer

Recent data obtained in Drosophila suggested that low PLP
levels may increase cancer risk in diabetic patients, providing
a mechanistic link between studies in humans that associate
PLP with cancer and studies indicating that diabetic patients
have a higher risk of developing various types of cancer
[145–147]. It has been shown that treatment with vitamin B6

antagonist 4-DP resulted in much more severe DNA damage
in diabetic individuals than in wild-type flies. Brains from
two different models of type 2 diabetes displayed 60–80% of
CABs (versus 25% in wild-type) and accumulated many
more AGEs. Moreover, double mutants bearing dPdxk1

mutation which abolishes PLP production and Akt104226

mutation which impairs insulin signalling showed a synergis-
tic interaction in CABs formation [133]. It is well known that
diabetic condition increases oxidative stress and impairs
DNA repair [148]. Accordingly, oxidative damage and DNA
strand breaks have been found in both type 1 and type 2 dia-
betic patients [149,150]. Thus, in a diabetic context, PLP
deficiency enhances genome instability by producing a further
weakening of antioxidant defence and enhancing hyperglycae-
mia, contributing to DNA damage throughout ROS induced
by AGEs. Since CABs are strictly linked to cancer development
and/or progression, extrapolated to humans, these data indi-
cate that low PLP levels may represent a cancer risk factor for
diabetic patients. This finding is particularly relevant because
the diabetic condition per se lowers PLP levels in animal
models and patients [151]. Moreover, these data reinforce the
hypothesis that besides inflammation, hyperinsulinaemia and
hyperglycaemia, DNA damage plays an important role in
driving diabetic cells towards malignant transformation.

4.4. Validation in Drosophila of PDXK human variants
and their impact on chromosome integrity

Drosophila is also a useful means of validating the causative
nature of candidate genetic variants found in patients, and of
obtaining functional information on the relationship between
disease and linkedgene [152]. This approach has been employed
to further confirm the role ofPDXK humangene in chromosome
integrity maintenance and to strengthen the model in which
CABs are largely produced by hyperglycaemia in low PLP con-
ditions [134]. From these studies it emerged that the expression
in dPdxk1 flies of four PDXK variants (three—D87H, V128I and
H246Q—listed in databases, and one—A243G—found in a
genetic screening in patients with diabetes) was unable to
rescue CABs, hyperglycaemia and AGE accumulation, differ-
ently from PDXK wild-type protein. Moreover, biochemical
analysis of D87H, V128I, H246Q and A243G mutant proteins
revealed reduced catalytic activity and reduced affinity for B6
vitamers, giving an explanation for this behaviour. Although
these variants are rare in population and carried in
heterozygous condition, these findings suggest that in certain
metabolic contexts anddiseases inwhichPLP levels are reduced,
the presence of these PDXK variants could threaten genome
integrity and contribute to increased cancer risk.
5. Conclusion
B group vitamins are crucial compounds for human health, as
they have a strong impact on genome stability and cancer. The
relationship between vitamin B6 and cancer, deduced from
studies reported in this review, is complex and leads us to
speculate that it can result from a balance between its antioxi-
dant properties on the one hand and its role as a micronutrient
important for cell metabolism on the other hand.

As described in this review,D.melanogaster turned out to be
a precious model for this kind of study. Findings obtained in
Drosophila provided information regarding the mechanisms
at the basis of the impact of vitamin B6 on DNA damage,
revealing that AGEs can play an important role. In addition,
they suggest that low vitamin B6 levels could represent a
cancer risk factor in diabetes patients. Future studies in this
model organism will be useful to further deepen knowledge
of the mechanisms by which vitamin B6 and other vitamins
can protect against DNA damage and cancer, with the aim of
developing personalized treatments.
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