125 research outputs found

    Photoluminescence properties of rare earth (Nd, Yb, Sm, Pr)-doped CeO2 pellets prepared by solid-state reaction

    Get PDF
    Several structural and optical properties of ceria (band gap, refractive index and lattice parameter) make this material very promising for applications in optoelectronics and photovoltaics. In this paper, we show that CeO2 can be efficiently functionalized by doping with trivalent rare earth ions to give rise to photon management properties. The trivalent ions can be successfully inserted by solid-state reaction of the elementary oxide powders. By combining the information obtained from the absorbance spectra with that of the PL excitation spectra, we demonstrate the presence of the trivalent ions in CeO2 and provide insight in the electronic level structure and transfer mechanism. In particular, we prove that both the complex absorption spectra and the energy transfer mechanisms cannot be fully explained without considering the presence of isolated Ce3+ ions in CeO2

    Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage.

    Get PDF
    Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention

    Photoluminescence of Nd-doped SnO2 thin films

    Get PDF
    Structural, optical, and electrical properties of Nd-doped SnOx thin films are reported. The atomic structure was characterized by x-ray diffraction and infrared absorption spectrometry. Investigation of the photoluminescence properties revealed Nd-related bands at 920 and 1100 nm for samples annealed at 700 degrees C, which present the tetragonal structure of the SnO2 rutile phase. Nd3+ ions can be indirectly excited and no concentration quenching was observed up to 3 at. %. It is concluded that Nd3+ ions are efficient optically active dopants in addition to be responsible of the observed electric conductivity improvement. These materials are then interesting for solar cell applications

    Structural, optical, and electrical properties of Yb-doped ZnO thin films prepared by spray pyrolysis method

    Get PDF
    Yb-doped ZnO thin films were prepared on glass substrates by spray pyrolysis technique in order to investigate the insertion of Yb ions in the ZnO matrix and the related optical properties of the films. The molar ratio of Yb in the spray solution was varied in the range of 0-5 at. %. X-ray diffraction patterns showed that the undoped and Yb-doped ZnO films exhibit the hexagonal wurtzite crystal structure with a preferential orientation along [002] direction. No secondary phase is observed in Yb-doped ZnO films. All films exhibit a transmittance between 75 and 90% in the visible range with a sharp absorption onset about 375 nm corresponding to the fundamental absorption edge at 3.3 eV. The photoluminescence measurements show a clear luminescence band at 980 nm that is characteristic of Yb(3+) transition between the electronic levels (2)F(5/2) and (2)F(7/2). This is an experimental evidence for an efficient energy transfer from ZnO matrix to Yb(3+). Hall effect measurements showed low resistivities and high carrier mobilities which makes these films of interest to photovoltaic devices.This work is supported by the program interdisciplinaire énergie du CNRS Grant No. PE10-2.1.2-2

    Optical and structural properties of Nd doped SnO2 powder fabricated by the sol-gel method

    Get PDF
    We report on the structural and optical properties of undoped and neodymium doped SnO2 powders (0, 1, 3, and 5 at% of Nd) synthesized by the sol-gel method. SEM and TEM microscopy techniques reveal a nanometric scale of the powders. We show that the tetragonal rutile phase is achieved after annealing at 700 degrees C. The crystallite size of the doped SnO2 is found to decrease gradually with the increase of Nd content without changing the SnO2 structure. A strong decrease in the intensity of the Raman peaks is noted for doped powders, which can be attributed to the location of Nd3+ ions at the Sn sites indicating Nd incorporation into the host matrix. For the first time the optical properties were studied by UV-VisNIR spectroscopy and revealed Nd related absorption bands in the SnO2 matrix. The investigation of the photoluminescence properties shows broad emission centred around 550-650 nm originating from defects present in the SnO2 host matrix. Under 325 nm laser excitation, a strong photoluminescence of trivalent Nd is observed in the infrared region and shows Nd related emission peaks at 885, 1065, and 1336 nm. Such a strong PL signal under laser excitation indicates that Nd3+ is optically active. The excitation dependent PL (PLE) recorded in the 450-700 nm range confirms the presence of active Nd3+ successfully inserted into the SnO2 host matrix

    Assessing cognitive insight in nonpsychiatric individuals and outpatients with schizophrenia in Taiwan: an investigation using the Beck Cognitive Insight Scale

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Beck Cognitive Insight Scale (BCIS) was designed for the assessment of the cognitive processes involved in self-reflection and the ability to modify erroneous beliefs and misinterpretations. Studies investigating the factor structure of the BCIS have indicated a two-factor model in the psychotic population. The factor structure of the BCIS, however, has not received much consideration in the nonpsychiatric population. The present study examined the factor structure and validity of the BCIS and compared its scores between nonpsychiatric individuals and outpatients with psychosis.</p> <p>Method</p> <p>The Taiwanese version of the BCIS was administered to 507 nonpsychiatric individuals and 118 outpatients with schizophrenia. The psychometric properties of the BCIS were examined through the following analyses: exploratory and confirmatory factor analyses, reliability, correlation analyses, and discriminative validity.</p> <p>Results</p> <p>The BCIS showed adequate internal consistency and stability over time. Exploratory and confirmatory factor analyses on the 15-item measure indicated a two-factor solution that supported the two dimensions of the Taiwanese BCIS, which was also observed with the original BCIS. Following the construct validation, we obtained a composite index (self-reflectiveness minus self-certainty) of the Taiwanese BCIS that reflected cognitive insight. Consistent with previous studies, our results indicated that psychosis is associated with low self-reflectiveness and high self-certainty, which possibly reflect lower cognitive insight. Our results also showed that better cognitive insight is related to worse depression in patients with schizophrenia spectrum disorders, but not in nonpsychiatric individuals. The receiver operating characteristic (ROC) analyses revealed that the area under the curve (AUC) was 0.731. A composite index of 3 was a good limit, with a sensitivity of 87% and a specificity of 51%.</p> <p>Conclusion</p> <p>The BCIS proved to be useful for measuring cognitive insight in Taiwanese nonpsychiatric and psychotic populations.</p

    Epitaxial growth of gamma-CoV2O6 thin films: Structure, morphology, and magnetic properties:

    No full text
    We report on the epitaxial growth of 100 nm thick triclinic gamma-CoV2O6 thin films deposited by pulsed laser deposition on TiO2(100) substrate. The layers were grown in narrow experimental conditions, at 600 degrees C and 0.1 millibar oxygen pressure. X-ray diffraction and transmission electron microscopy evidenced the presence of two variants and the following epitaxial relation between the layers and the substrate: [001] TiO2(100) vertical bar vertical bar [0 +/- 10]gamma-CoV2O6(100). Besides the magnetization steps expected in gamma-CoV2O6, low temperature magnetic measurements performed along different crystalline axes show the existence of a strong anisotropy compatible with that expected from a one dimensional system, with the easy magnetization axis lying along the b direction (i.e., the Co chains). (C) 2013 AIP Publishing LLC
    • …
    corecore