3,004 research outputs found

    Prospects for detecting the Rossiter-McLaughlin effect of Earth-like planets: the test case of TRAPPIST-1b and c

    Get PDF
    The Rossiter-McLaughlin effect is the principal method of determining the sky-projected spin--orbit angle (β\beta) of transiting planets. Taking the example of the recently discovered TRAPPIST-1 system, we explore how ultracool dwarfs facilitate the measurement of the spin--orbit angle for Earth-sized planets by creating an effect that can be an order of magnitude more ample than the Doppler reflex motion caused by the planet if the star is undergoing rapid rotation. In TRAPPIST-1's case we expect the semi-amplitudes of the Rossiter-McLaughlin effect to be 405040-50 m/s for the known transiting planets. Accounting for stellar jitter expected for ultracool dwarfs, instrumental noise, and assuming radial velocity precisions both demonstrated and anticipated for upcoming near-infrared spectrographs, we quantify the observational effort required to measure the planets' masses and spin--orbit angles. We conclude that if the planetary system is well-aligned then β\beta can be measured to a precision of 10\lesssim 10^{\circ} if the spectrograph is stable at the level of 2 m/s. We also investigate the measure of Δβ\Delta \beta, the mutual inclination, when multiple transiting planets are present in the system. Lastly, we note that the rapid rotation rate of many late M-dwarfs will amplify the Rossiter-McLaughlin signal to the point where variations in the chromatic Rossiter-McLaughlin effect from atmospheric absorbers should be detectable.Comment: 11 pages, 4 figures. Accepted to MNRAS. Comments welcom

    Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb

    Get PDF
    The formation of precise stereotypic connections in sensory systems is critical for the ability to detect and process signals from the environment. In the olfactory system, olfactory sensory neurons (OSNs) project axons to spatially defined glomeruli within the olfactory bulb (OB). A spatial relationship exists between the location of OSNs within the olfactory epithelium (OE) and their glomerular targets along the dorsoventral axis in the OB. The molecular mechanisms underlying the zonal segregation of OSN axons along the dorsoventral axis of the OB are poorly understood. Using robo-2/ (roundabout) and slit-1/ mice, we examined the role of the Slit family of axon guidance cues in the targeting of OSN axons during development. We show that a subset of OSN axons that normally project to the dorsal region of the OB mistarget and form glomeruli in the ventral region in robo-2/ and slit-1/ mice. In addition, we show that the Slit receptor, Robo-2, is expressed in OSNs in a high dorsomedial to low ventrolateral gradient across the OE and that Slit-1 and Slit-3 are expressed in the ventral region of the OB. These results indicate that the dorsal-to-ventral segregation of OSN axons are not solely defined by the location of OSNs within the OE but also relies on axon guidance cues

    Genome wide SNP discovery in flax through next generation sequencing of reduced representation libraries

    Get PDF
    BACKGROUND: Flax (Linum usitatissimum L.) is a significant fibre and oilseed crop. Current flax molecular markers, including isozymes, RAPDs, AFLPs and SSRs are of limited use in the construction of high density linkage maps and for association mapping applications due to factors such as low reproducibility, intense labour requirements and/or limited numbers. We report here on the use of a reduced representation library strategy combined with next generation Illumina sequencing for rapid and large scale discovery of SNPs in eight flax genotypes. SNP discovery was performed through in silico analysis of the sequencing data against the whole genome shotgun sequence assembly of flax genotype CDC Bethune. Genotyping-by-sequencing of an F(6)-derived recombinant inbred line population provided validation of the SNPs. RESULTS: Reduced representation libraries of eight flax genotypes were sequenced on the Illumina sequencing platform resulting in sequence coverage ranging from 4.33 to 15.64X (genome equivalents). Depending on the relatedness of the genotypes and the number and length of the reads, between 78% and 93% of the reads mapped onto the CDC Bethune whole genome shotgun sequence assembly. A total of 55,465 SNPs were discovered with the largest number of SNPs belonging to the genotypes with the highest mapping coverage percentage. Approximately 84% of the SNPs discovered were identified in a single genotype, 13% were shared between any two genotypes and the remaining 3% in three or more. Nearly a quarter of the SNPs were found in genic regions. A total of 4,706 out of 4,863 SNPs discovered in Macbeth were validated using genotyping-by-sequencing of 96 F(6) individuals from a recombinant inbred line population derived from a cross between CDC Bethune and Macbeth, corresponding to a validation rate of 96.8%. CONCLUSIONS: Next generation sequencing of reduced representation libraries was successfully implemented for genome-wide SNP discovery from flax. The genotyping-by-sequencing approach proved to be efficient for validation. The SNP resources generated in this work will assist in generating high density maps of flax and facilitate QTL discovery, marker-assisted selection, phylogenetic analyses, association mapping and anchoring of the whole genome shotgun sequence

    Newinsights in the ontogeny and taphonomy of the Devonian acanthodian Triazeugacanthus affinis from the Miguasha Fossil-Lagerstatte, Eastern Canada

    Get PDF
    Progressive biomineralization of a skeleton occurs during ontogeny in most animals. In fishes, larvae are poorly mineralized, whereas juveniles and adults display a progressively more biomineralized skeleton. Fossil remains primarily consist of adult specimens because the fossilization of poorly-mineralized larvae and juveniles necessitates exceptional conditions. The Miguasha Fossil-Lagerstatte is renowned for its Late Devonian vertebrate fauna, revealing the exceptional preservation of fossilized ontogenies for 14 of the 20 fish species from this locality. The mineralization of anatomical structures of the acanthodian Triazeugacanthus affinis from Miguasha are compared among larval, juvenile and adult specimens using Energy Dispersive X-ray Spectrometry. Chemical composition of anatomical structures of Triazeugacanthus reveals differences between cartilage and bone. Although the histology and anatomy is well-preserved, Fourier transform infrared spectrometry shows that the original chemical composition of bone is altered by diagenesis; the mineral phase of the bone (i.e., hydroxyapatite) is modified chemically to form more stable carbonate-fluorapatite. Fluorination occurring in mineralized skeletal structures of adult Triazeugacanthus is indicative of exchanges between groundwater and skeleton at burial, whereas the preservation of larval soft tissues is likely owing to a rapid burial under anoxic conditions. The exceptional state of preservation of a fossilized ontogeny allowed us to characterize chemically the progressive mineralization of the skeleton in a Devonian early vertebrate

    Guidelines for physical weed control research: flame weeding, weed harrowing and intra-row cultivation

    Get PDF
    A prerequisite for good research is the use of appropriate methodology. In order to aggregate sound research methodology, this paper presents some tentative guidelines for physical weed control research in general, and flame weeding, weed harrowing and intra-row cultivation in particular. Issues include the adjustment and use of mechanical weeders and other equipment, the recording of impact factors that affect weeding performance, methods to assess effectiveness, the layout of treatment plots, and the conceptual models underlying the experimental designs (e.g. factorial comparison, dose response). First of all, the research aims need to be clearly defined, an appropriate experimental design produced and statistical methods chosen accordingly. Suggestions on how to do this are given. For assessments, quantitative measures would be ideal, but as they require more resources, visual classification may in some cases be more feasible. The timing of assessment affects the results and their interpretation. When describing the weeds and crops, one should list the crops and the most abundantly present weed species involved, giving their density and growth stages at the time of treatment. The location of the experimental field, soil type, soil moisture and amount of fertilization should be given, as well as weather conditions at the time of treatment. The researcher should describe the weed control equipment and adjustments accurately, preferably according to the prevailing practice within the discipline. Things to record are e.g. gas pressure, burner properties, burner cover dimensions and LPG consumption in flame weeding; speed, angle of tines, number of passes and direction in weed harrowing. The authors hope this paper will increase comparability among experiments, help less experienced scientists to prevent mistakes and essential omissions, and foster the advance of knowledge on non-chemical weed management

    Characterization of the K2-18 multi-planetary system with HARPS: A habitable zone super-Earth and discovery of a second, warm super-Earth on a non-coplanar orbit

    Full text link
    The bright M dwarf K2-18 at 34 pc is known to host a transiting super-Earth-sized planet orbiting within the star's habitable zone; K2-18b. Given the superlative nature of this system for studying an exoplanetary atmosphere receiving similar levels of insolation as the Earth, we aim to characterize the planet's mass which is required to interpret atmospheric properties and infer the planet's bulk composition. We obtain precision radial velocity measurements with the HARPS spectrograph and couple those measurements with the K2 photometry to jointly model the observed radial velocity variation with planetary signals and a radial velocity jitter model based on Gaussian process regression. We measure the mass of K2-18b to be 8.0±1.98.0 \pm 1.9 M_{\oplus} with a bulk density of 3.7±0.93.7 \pm 0.9 g/cm3^3 which may correspond to a predominantly rocky planet with a significant gaseous envelope or an ocean planet with a water mass fraction 50\gtrsim 50%. We also find strong evidence for a second, warm super-Earth K2-18c at 9\sim 9 days with a semi-major axis 2.4 times smaller than the transiting K2-18b. After re-analyzing the available light curves of K2-18 we conclude that K2-18c is not detected in transit and therefore likely has an orbit that is non-coplanar with K2-18b. A suite of dynamical integrations with varying simulated orbital eccentricities of the two planets are used to further constrain each planet's eccentricity posterior from which we measure eb<0.43e_b < 0.43 and ec<0.47e_c < 0.47 at 99% confidence. The discovery of the inner planet K2-18c further emphasizes the prevalence of multi-planet systems around M dwarfs. The characterization of the density of K2-18b reveals that the planet likely has a thick gaseous envelope which along with its proximity to the Solar system makes the K2-18 planetary system an interesting target for the atmospheric study of an exoplanet receiving Earth-like insolation.Comment: 13 pages, 8 figures including 4 interactive figures best viewed in Adobe Acrobat. Submitted to Astronomy & Astrophysics. Comments welcom

    Nanoscale structuring of tungsten tip yields most coherent electron point-source

    Full text link
    This report demonstrates the most spatially-coherent electron source ever reported. A coherence angle of 14.3 +/- 0.5 degrees was measured, indicating a virtual source size of 1.7 +/-0.6 Angstrom using an extraction voltage of 89.5 V. The nanotips under study were crafted using a spatially-confined, field-assisted nitrogen etch which removes material from the periphery of the tip apex resulting in a sharp, tungsten-nitride stabilized, high-aspect ratio source. The coherence properties are deduced from holographic measurements in a low-energy electron point source microscope with a carbon nanotube bundle as sample. Using the virtual source size and emission current the brightness normalized to 100 kV is found to be 7.9x10^8 A/sr cm^2

    Activation and enzymatic characterization of recombinant human kallikrein 8

    Get PDF
    Human kallikrein 8 (hK8), whose gene was originally cloned as the human ortholog of a mouse brain protease, is known to be associated with diseases such as ovarian cancer and Alzheimer's disease. Recombinant human pro-kallikrein 8 was activated with lysyl endopeptidase-conjugated beads. Amino-terminal sequencing of the activated enzyme demonstrated the cleavage of a 9-aa propeptide from the pro-enzyme. The substrate specificity of activated hK8 was characterized using synthetic fluorescent substrates. hK8 showed trypsin-like specificity, as predicted from sequence analysis and enzymatic characterization of the mouse ortholog. All synthetic substrates tested containing either arginine or lysine at P1 position were cleaved by hK8. The highest k cat/K m value of 20×103M-1 s-1 was observed with Boc-Val-Pro-Arg-7-amido-4-methylcoumarin. The activity of hK8 was inhibited by antipain, chymostatin, and leupeptin. The concentration for 50% inhibition by the best inhibitor, antipain, was 0.46μM. The effect of different metal ions on the enzyme activity was analyzed. Whereas Na+ had no effect on hK8 activity, Ni2+ and Zn2+ decreased the activity and Ca2+, Mg2+, and K+ had a stimulatory effect. Ca2+ was the best activator, with an optimal concentration of approximately 10μ

    Saisonnalité du transport de carbone organique dissous dans le ruisseau de l'Hermine, un bassin versant de tête de réseau du Bouclier Canadien

    Get PDF
    Nous avons étudié la variabilité saisonnière de la relation entre les fluctuations des concentrations en carbone organique dissous (COD) dans le ruisseau de l'Hermine (Québec, Canada) et les changements du débit (Q). Un total de 93 événements hydrologiques échantillonnés de 1994 à 2003 et regroupés sur une base saisonnière (hiver-printemps, été, automne) a été analysé. Le modèle de régression linéaire est utilisé afin de déterminer, pour chaque événement, la pente de la relation entre la concentration en COD dans le ruisseau et le débit. Ces pentes sont regroupées par saison et selon un seuil arbitraire de un qui permet de contraster les conditions hydrologiques et climatiques initiales des événements répertoriés. Les résultats du test de Kruskal-Wallis, visant la comparaison entre les événements de pentes supérieures et inférieures à un, montrent clairement la saisonnalité de la relation entre le COD et le débit. La saisonnalité de la relation COD/Q est ensuite mise en relation avec des variables climatiques et hydrologiques susceptibles de conditionner le transport du COD dans le bassin de l'Hermine. Les résultats montrent que les changements saisonniers des conditions climatiques et hydrologiques dans le bassin versant ont un impact significatif sur la relation entre le COD et le débit. Ainsi, le volume de précipitation tombé durant l'événement, la température moyenne de l'air et la température du sol régissent significativement (p =0,041; 0,001 et 0,009 respectivement) le transport du COD pour la période hiver-printemps. Les basses températures du sol et l'apport élevé en eau via les précipitations et la fonte favorisent le lessivage intense du COD soluble déjà limité par les basses températures. Au cours de l'été, l'état initial d'humidité du bassin est le principal facteur contrôlant l'évolution des concentrations de COD lors d'une crue; les fortes relations avec le pourcentage d'humidité des sols et le débit total 24 h avant l'événement le prouvent (p =0,039 et 0,0003 respectivement). Les changements les plus prononcés du COD surviennent, au cours de l'été, suite à une période prolongée de sécheresse. À l'automne, le transport du COD est influencé par le volume de précipitation tombé durant l'événement (p =0,031) et la température du sol (p =0,042). La modélisation de la relation COD/Q par les variables hydro-climatiques montre que 40% de la relation COD/Q s'explique par la température du sol durant la période d'hiver-printemps. Durant l'été, les conditions initiales d'humidité du bassin, traduites par le débit 24 h avant l'événement, expliquent à 51% la relation COD/Q. À l'automne, la relation COD/Q est gouvernée à 50% à la fois par le volume de précipitation tombé durant l'événement et la température du sol. L'analyse de ces données établit clairement la saisonnalité de la relation COD/Q et que des variables climatiques et hydrologiques permettent de quantifier ces fluctuations saisonnières.The terrestrial organic carbon (C) pool, estimated to 1.5 x 1015 kg C for the first meter of soil (Amundson, 2001), represents a major terrestrial elemental stock for which the recycling rate and the response to perturbations are still unknown. Under the present changing climatic conditions, C fluxes in terrestrial ecosystems could be significantly disturbed during the next decades. Indeed, the multi-annual changes in temperature and precipitation are likely to have a major impact on the net primary production and on organic matter decomposition in soils. This situation influences the production of the dissolved organic carbon (DOC) in soils, its transport to surface waters and hence, water quality. In this context, a better knowledge of the climatic and hydrologic factors influencing seasonal variations in DOC export is crucial to improve our understanding of the potential transformation of carbon stocks and fluxes in terrestrial ecosystems.The objectives of the present study were 1) to evaluate the seasonality in the relationship between dissolved organic carbon (DOC) concentrations in the stream and streamflow (Q) and 2) to quantify the impact of seasonal changes in climatic and hydrological conditions in the watershed on the DOC/Q relationship.The Hermine catchment is located about 80 km north of Montréal, Québec, Canada. An intermittent first-order stream drains the 5.1 ha catchment. Soils are Orthic and Gleyed Humo-Ferric and Ferro-Humic Podzols. The stream water was sampled daily, from 1994 to 2003, with an automatic sampler. The stream discharge was calculated from the water level above a 90º V-notch weir using a Global level sensor bubbler. Soil organic C content was analysed by the modified Walkley-Black method. Because of the high cost of DOC analysis for numerous samples, the DOC content was estimated by the relationship obtained between eight stream water samples analysed with a Shimadzu TOC analyser (Shimadzu, Kyoto, Japan) and the corresponding absorbance measured at 254 nm. From the initial year of the project, 1994, the regression used was Y=-0.05 + 32.60 X with an r2 value of 0.58 and a precision of 0.05 mg·L-1.The relationship between the DOC concentration and Q at the Hermine was positive and significant (p < 0.01) when all data were considered (n=1960). Because of the weakness of this relation (r2 =0.12), the stream samples, from 1994 to 2003, were seasonally split into 93 distinct hydrological events: 33 for winter-spring, 34 for summer and 26 for fall. A linear regression model was used to determine, for each event, the slope of the relationship between the DOC concentrations in the stream and Q. To contrast the antecedent conditions of the Hermine watershed, the events from a given season were divided into two groups. The Kruskal-Wallis test was then used to establish the link between the slope of the DOC/Q relationships on the one hand, and the environmental watershed conditions on the other hand: the climatic variables (volume of precipitation during event, mean air and soil temperatures) and the hydrological variables (stream discharge 24 h before the event, soil moisture, and ground water level).The DOC concentrations in the stream varied on an annual, a seasonal and an event basis. For the period 1994 to 2003, the annual mean concentrations, calculated from daily samples, varied from 2.0 to 2.5 mg DOC·L-1. On a seasonal basis, mean daily DOC was higher during the summer and the fall (2.9 and 2.8 mg DOC·L-1 respectively), and lower in the winter-spring (2.1 mg DOC·L-1). The relation between DOC concentrations and Q fluctuated as a function of the seasonal evolution of climatic and hydrological conditions in the Hermine catchment. For winter-spring events, 79% of the events had a DOC/Q slope lower than one. This period was characterised by high streamflow levels and high total DOC fluxes even though the daily mean DOC concentrations were low (2.1 mg DOC·L-1). The volume of precipitation during the event (p =0.041), the mean air temperature (p =0.001) and the soil temperature (p =0.009) were significantly related to the difference between events with slopes lower and higher than one. Indeed the slope of the relation increases when soil temperatures are elevated. When the temperatures are higher, DOC export increases and subsurface flow in soil horizon is enriched in DOC. Under colder temperature, the DOC production is limited and the soluble organic substances stored in soils are leached out the catchment with the high volume of precipitation and with the water coming from the snowmelt. For the summer period, there were 20 events with slopes greater than one against 14 with slopes lower than one. The soil humidity (p =0.039) and the total streamflow 24 h before the event (p=0.0003), were the two variables that significantly distinguished both slope groups. Rapid changes in DOC concentration occur during hydrological events following a long drought period. Under dry conditions, the subsurface flow in soil horizons rich in organic matter, the re-hydration of bed sediments and the hydrophobic behaviour of soil particles can all contribute to the export of very high DOC concentrations, even during small events. The relationships between DOC and Q, for the fall season, were significantly influenced by the volume of precipitation during the event (p =0.031) and the mean soil temperature (p =0.042). The events with the lower slopes showed the highest volume of precipitation during event and the lowest soil temperature. For these events occurring under wet conditions, the water originates essentially from the B and C horizons, and DOC fluctuations are then limited because of the low concentrations of the DOC in these horizons (anionic sorption of soluble organic substances by iron oxides).Best-fit from multiple regressions indicated that 40% of the link between DOC and Q was explained by the soil temperature during the winter-spring period (p =0.0001). For summer, the streamflow 24 h before events accounted for 51% of the variation in DOC/Q relationships (p =0.00001). For the fall period, the volume of precipitation during event and the soil temperature both contributed equally to the DOC/Q relationships (p =0.001). From these results, obtained from a multi-year project, it is clear that the relation between DOC and Q is a function of the variability in the climatic and hydrological watershed conditions. In a context of global warming, it is possible that warmer air temperatures have an effect on soil temperature. Thus, during winter-spring and fall periods, the duration and the intensity of the DOC production in soils will increase and the export of DOC from the watershed to other surface water system could become more important under equivalent or higher streamflow. Higher air temperature also means higher evapotranspiration by the forest during the summer period, and consequently dryer watershed conditions. A low streamflow and a low soil humidity level could be expected and then, brief rain events will sporadically flush the soluble organic carbon accumulated in the soil. The DOC export would be insignificant for that period, but the DOC would reach the highest annual level. The new knowledge on the DOC/Q relationships, at the hydrological event scale, will be added to the accumulated data on the possible effects of global warming on the carbon cycle in forested ecosystems
    corecore