37 research outputs found

    Melanosis and quality attributes of chill stored farm raised whiteleg shrimp (Litopenaeus vannamei)

    Get PDF
    Loss of market value of shrimp is mainly due to the formation of black spot called melanosis. A study was conducted for 14 days to determine the extent of melanosis and quality changes during that period of freshly har-vested whiteleg shrimp (Litopenaeus vannamei) under chilled storage (2?). Among quality parameters, total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBAR-S), were varied from 13.17 mg % to 44.50 mg % and 0.04to 2.57 mg malondehaldehyde/kg of fat respectively whereas melanosis score and metric chroma (C) exhibited significant increases during chilled storage (P<0.05). There was a slight increase in moisture, crude fat and pH from 73.96 % to 74.57 %, 1.05 % to 1.14 % and 6.52 to 7.60 respectively at 14th day of storage. Loss of protein from 22.51 % to 21.28 % may be due to decrease in available amino acids during chilled storage and total plate count (TPC) showed gradual increase of bacterial load up to 1.73*107 log CFU/g at the end of chilled storage. The sensory analysis by panellists indicated, the acceptability of white leg shrimp was up to 6 days in chilled condition and formation of black spot is one of the major parameter for rejection by the panellists

    The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets.

    Get PDF
    yesTraditional rotor dynamics mainly focuses on the steady- state behavior of the rotor and shafting. However, for systems such as hydro turbine generating sets (HTGS) where the control and regulation is frequently applied, the shafting safety and stabilization in transient state is then a key factor. The shafting transient state inevitably involves multiparameter domain, multifield coupling, and coupling dynamics. In this paper, the relative value form of the Lagrange function and its equations have been established by defining the base value system of the shafting. Takingthe rotation angle and the angular speed of the shafting as a link, the shafting lateral vibration and generator equations are integrated into the framework of generalized Hamiltonian system. The generalized Hamiltonian control model is thus established. To make the model more general, additional forces of the shafting are taken as the input excitation in proposed model. The control system of the HTGS can be easily connected with the shafting model to form the whole simulation system of the HTGS. It is expected that this study will build a foundation for the coupling dynamics theory using the generalized Hamiltonian theory to investigate coupling dynamic mechanism among the shafting vibration, transient of hydro turbine generating sets, and additional forces of the shafting.National Natural Science Foundation of China under Grant Nos. 51179079 and 5083900

    INDIAN INLAND WATER AND PARTS OF ANTARCTIC ICE SHEET ELEVATION AND ICE SHEET VELOCITY MONITORING USING ALTIMETRY AND SAR BASED DATASETS

    Get PDF
    The monitoring of inland water and continental ice sheets is very important from water management and global climate related studies. The current study utilizes the SGDR data from Saral-Altika during 2013–2017 to estimate and monitor water level in 24 major reservoirs of India. The R2 value for majority of reservoirs was more than 0.99 and RMSE error value also was less than 0.40 m. In addition, wide rivers of India such as Mahanadi River, was also monitored using Altika data covering part of Mahanadi River from Khairmal to Naraj gauging sites during 2013–2016 time period. One dimensional hydro-dynamic (1D-HD) model was setup for this part of river to generate river Discharge at virtual gauge. The part of Antarctic ice sheet South of Indian research station Maitri, East Antarctica, was studied for ice sheet elevation changes using ground based stake network as well as space based altimeter/LIDAR datasets during 2003–2017 time period. 2003–2009 time was used for getting elevation changes using Icesat-1 level 2 altimetry product, and Geophysical Data Record (GDR) data from Altika was used with slope correction from 2013–2016 time period. An extensive network of ground based stake networks were used for validating the derived elevation changes. The ice sheet and glacier line of site velocity was estimated using Sentinel-1 based InSAR data with 6 to 12 day time interval data sets for year 2016 and 2017. The derived glacier velocity was comparable with optical image (Landsat-8) based glacier velocity for same year and also with historical Radarsat-1 based glacier velocity results

    Disentangling gravity waves from balanced flow

    No full text

    Internal gravity wave emission in different dynamical regimes

    No full text
    AbstractWe aim to diagnose internal gravity waves emitted from balanced flow and investigate their role in the downscale transfer of energy. We use an idealized numerical model to simulate a range of baroclinically unstable flows to mimic dynamical regimes ranging from ageostrophic to quasi-geostrophic flows. Wave-like signals present in the simulated flows, seen for instance in the vertical velocity, can be related to gravity wave activity identified by frequency and frequency-wavenumber spectra. To explicitly assign the energy contributions to the balanced and unbalanced (gravity) modes, we perform linear and non-linear modal decomposition to decompose the full state variable into its balanced and unbalanced counterparts. The linear decomposition shows a reasonable separation of the slow and fast modes, but is no longer valid when applied to a nonlinear system. To account for the non-linearity in our system, we apply the normal mode initialization technique proposed by Machenhauer in 1977. Further, we assess the strength of the gravity wave activity and dissipation related to the decomposed modes for different dynamical regimes. We find that gravity wave emission becomes increasingly stronger going from quasi-geostrophic to ageostrophic regime. The kinetic energy tied to the unbalanced mode scales close to Ro2 (or Ri?1), with Ro and Ri being Rossby and Richardson numbers. Furthermore, internal gravity waves dissipate predominantly through small-scale dissipation, which emphasizes their role in the downscale energy transfer

    Multi Speed Model Updating of Rotor Systems

    No full text

    Mixed Rossby-Gravity wave-wave interactions

    No full text

    Electroluminescence of CdS nanoparticles-polyvinyl carbazole composites

    No full text
    157-160In the present study thin films of CdS nanoparticle-polyvinyl carbazole (PVK) composite have been prepared using chemical method. The absorption spectra and electroluminescence of the films doped with different concentrations of CdS nanoparticle have been measured. The absorption of pure PVK film starts at 290 nm wavelength in which a peak appears at 270 nm, indicating that the optical energy gap of PVK film is 4.26 eV. The absorption onset of CdS-PVK thin films is obtained at 300 nm, which gives the band gap of CdS nanoparticles as 4.13 eV. It is observed that the current varies linearly, whereas EL intensity varies non-linearly with increasing voltage. At a particular frequency, the emission starts at a particular threshold voltage and then it increases rapidly with increasing voltage. At a particular frequency and voltage, the EL intensity of the composite increases with concentration of CdS nanoparticles in PVK polymer and attains saturation at 5% CdS concentration. It is shown that the EL of CdS-PVK composites can be explained on the basis of electron acceleration-collision mechanism

    Not Available

    No full text
    Not AvailableA great deal of attention has been focused on the various health benefits apparently associated with consumption offish oil. The incorporation offish oils in food products is becoming increasingly widespread and a large variety of products is being marketed. However, the use of fish oil as functional nutritional ingredients in foods has been limited by its oxidative susceptibility. In the present study, attempts were made to develop fish oil fortified cookies as healthy snack foods by incorporating fish oil micro-encapsulate. Micro-encapsulation of fish oil was done by spray drying. Commercially available milk was used to form micro sized complexes with fish oil. Fish gelatin/maltodextrin were used as a wall material for encapsulation. Fish oil was added in three forms (fish oil as such, fish oil-in-water emulsion and fish oil microencapsulate) for the preparation of cookies. Cookies prepared without incorporating fish oil was served as control. The physical, chemical and sensory attributes of cookies were evaluated. Encapsulation significantly (P < 0.05) decreased lipid oxidation in the cookies. The sensory evaluation of cookies showed significant (P < 0.05) difference in the overall acceptability. Results from this study, demonstrated the possibility of fish oil incorporation into cookies through emulsification and microencapsulation which may increase the intake of omega-3 fatty acids for nutritional benefits.Not Availabl
    corecore