8 research outputs found

    Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part I: Model description and assessment of the adiabatic flow hypothesis

    Full text link
    [EN] The fuel flow along common-rail injectors is usually treated as isothermal, although the expansions across the injector orifices lead to variations in the fuel temperature that in turn modify the fuel properties influencing injector dynamics. This investigation introduces the hypothesis of adiabatic flow to account for local temperature variations in the computational model of a solenoid injector previously introduced by the authors in its isothermal variant. The main contribution of the study consists on the assessment of the validity of this hypothesis by qualitatively estimating the relative importance of the heat transfer processes during the injection event and in the time lapse among injections. Results of this tentative assessment for engine-like conditions imply that heat transfer is usually still occurring by the time of a new injection, meaning any initial temperature difference among the fuel and the injector wall is not expected to be completely mitigated before each injection event. The magnitude of reduction of this temperature difference depends on the injection frequency through engine speed and load. Anyway, the assumption of adiabatic flow seems to hold once the steady conditions of the injection are reached, meaning that any temperature change predictions considered with the adiabatic hypothesis may be valid as long as a certain temperature change is accounted for at the injector inlet. In a second part of the paper, the capabilities of this new model are validated against experimental data, allowing the use of the model to explore the influence of the thermal effects on the injection event.This work was partly sponsored by FEDER and the Spanish "Ministerio de Economia y Competitividad" in the frame of the project "Desarrollo de modelos de combustion y emisiones HPC para el analisis de plantas propulsivas de transporte sostenible (CHEST)", reference TRA2017-89139-C2-1-R-AR. The support of General Motors Global Research and Development (US) concerning the experimental measurements in the engine is gratefully acknowledged by the authors. The authors would also like to thank Jose Enrique del Rey, Leo Thiercelin and Mariano Sanchez for their technical help.Salvador, FJ.; Gimeno, J.; Martín, J.; Carreres, M. (2020). Thermal effects on the diesel injector performance through adiabatic 1D modelling. Part I: Model description and assessment of the adiabatic flow hypothesis. Fuel. 260:1-13. https://doi.org/10.1016/j.fuel.2019.116348S113260Heywood JB. Internal Combustion Engine Fundamentals. vol. 21. 1988.Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 1: Hydraulic characterization. Applied Energy, 88(4), 1068-1074. doi:10.1016/j.apenergy.2010.10.012Payri, R., Salvador, F. J., Gimeno, J., & De la Morena, J. (2011). Influence of injector technology on injection and combustion development – Part 2: Combustion analysis. Applied Energy, 88(4), 1130-1139. doi:10.1016/j.apenergy.2010.10.004Gavaises, M. (2008). Flow in valve covered orifice nozzles with cylindrical and tapered holes and link to cavitation erosion and engine exhaust emissions. International Journal of Engine Research, 9(6), 435-447. doi:10.1243/14680874jer01708Som, S., Ramirez, A. I., Longman, D. E., & Aggarwal, S. K. (2011). Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions. Fuel, 90(3), 1267-1276. doi:10.1016/j.fuel.2010.10.048Salvador, F. J., Carreres, M., Jaramillo, D., & Martínez-López, J. (2015). Analysis of the combined effect of hydrogrinding process and inclination angle on hydraulic performance of diesel injection nozzles. Energy Conversion and Management, 105, 1352-1365. doi:10.1016/j.enconman.2015.08.035Nguyen, D., Duke, D., Kastengren, A., Matusik, K., Swantek, A., Powell, C. F., & Honnery, D. (2017). Spray flow structure from twin-hole diesel injector nozzles. Experimental Thermal and Fluid Science, 86, 235-247. doi:10.1016/j.expthermflusci.2017.04.020Salvador, F. J., de la Morena, J., Carreres, M., & Jaramillo, D. (2017). Numerical analysis of flow characteristics in diesel injector nozzles with convergent-divergent orifices. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(14), 1935-1944. doi:10.1177/0954407017692220Lee, C. S., Lee, K. H., Reitz, R. D., & Park, S. W. (2006). EFFECT OF SPLIT INJECTION ON THE MACROSCOPIC DEVELOPMENT AND ATOMIZATION CHARACTERISTICS OF A DIESEL SPRAY INJECTED THROUGH A COMMON-RAIL SYSTEM. Atomization and Sprays, 16(5), 543-562. doi:10.1615/atomizspr.v16.i5.50Wang, X., Huang, Z., Zhang, W., Kuti, O. A., & Nishida, K. (2011). Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Applied Energy, 88(5), 1620-1628. doi:10.1016/j.apenergy.2010.11.035Gumus, M., Sayin, C., & Canakci, M. (2012). The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel, 95, 486-494. doi:10.1016/j.fuel.2011.11.020Bianchi GM, Falfari S, Pelloni P, Kong S-C, Reitz RD. Numerical Analysis of High-Pressure Fast-Response Common Rail Injector Dynamics. SAE Tech Pap 2002-01-0213 2002. doi:10.4271/2002-01-0213.Marcer R, Audiffren C, Viel A, Bouvier B, Walbott A, Argueyrolles B. Coupling 1D System AMESim and 3D CFD EOLE models for Diesel Injection Simulation Renault. ILASS - Eur. 2010, 23rd Annu. Conf. Liq. At. Spray Syst., 2010, p. 1–10.Plamondon, E., & Seers, P. (2014). Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends. Applied Energy, 131, 411-424. doi:10.1016/j.apenergy.2014.06.039Salvador, F. J., Gimeno, J., De la Morena, J., & Carreres, M. (2012). Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Results of the simulations and discussion. Energy Conversion and Management, 54(1), 122-132. doi:10.1016/j.enconman.2011.10.007Salvador, F. J., Plazas, A. H., Gimeno, J., & Carreres, M. (2012). Complete modelling of a piezo actuator last-generation injector for diesel injection systems. International Journal of Engine Research, 15(1), 3-19. doi:10.1177/1468087412455373Payri, R., Salvador, F. J., Carreres, M., & De la Morena, J. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Conversion and Management, 114, 376-391. doi:10.1016/j.enconman.2016.02.043Wang, X., Huang, Z., Kuti, O. A., Zhang, W., & Nishida, K. (2010). Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure. International Journal of Heat and Fluid Flow, 31(4), 659-666. doi:10.1016/j.ijheatfluidflow.2010.03.006Theodorakakos, A., Strotos, G., Mitroglou, N., Atkin, C., & Gavaises, M. (2014). Friction-induced heating in nozzle hole micro-channels under extreme fuel pressurisation. Fuel, 123, 143-150. doi:10.1016/j.fuel.2014.01.050Strotos, G., Koukouvinis, P., Theodorakakos, A., Gavaises, M., & Bergeles, G. (2015). Transient heating effects in high pressure Diesel injector nozzles. International Journal of Heat and Fluid Flow, 51, 257-267. doi:10.1016/j.ijheatfluidflow.2014.10.010Salvador, F. J., Carreres, M., De la Morena, J., & Martínez-Miracle, E. (2018). Computational assessment of temperature variations through calibrated orifices subjected to high pressure drops: Application to diesel injection nozzles. Energy Conversion and Management, 171, 438-451. doi:10.1016/j.enconman.2018.05.102Desantes, J., Salvador, F., Carreres, M., & Jaramillo, D. (2015). Experimental Characterization of the Thermodynamic Properties of Diesel Fuels Over a Wide Range of Pressures and Temperatures. SAE International Journal of Fuels and Lubricants, 8(1), 190-199. doi:10.4271/2015-01-0951Dernotte, J., Hespel, C., Foucher, F., Houillé, S., & Mounaïm-Rousselle, C. (2012). Influence of physical fuel properties on the injection rate in a Diesel injector. Fuel, 96, 153-160. doi:10.1016/j.fuel.2011.11.073Park, Y., Hwang, J., Bae, C., Kim, K., Lee, J., & Pyo, S. (2015). Effects of diesel fuel temperature on fuel flow and spray characteristics. Fuel, 162, 1-7. doi:10.1016/j.fuel.2015.09.008Seykens X, Somers LMT, Baert RSG. Modelling of common rail fuel injection system and influence of fluid properties on process. Proc. VAFSEP, Dublin, Ireland; July 6-9, 2004, p. 6–9.Catania, A. E., Ferrari, A., & Spessa, E. (2008). Temperature variations in the simulation of high-pressure injection-system transient flows under cavitation. International Journal of Heat and Mass Transfer, 51(7-8), 2090-2107. doi:10.1016/j.ijheatmasstransfer.2007.11.032Yu, H., Goldsworthy, L., Brandner, P. A., Li, J., & Garaniya, V. (2018). Modelling thermal effects in cavitating high-pressure diesel sprays using an improved compressible multiphase approach. Fuel, 222, 125-145. doi:10.1016/j.fuel.2018.02.104Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2017). Experimental assessment of the fuel heating and the validity of the assumption of adiabatic flow through the internal orifices of a diesel injector. Fuel, 188, 442-451. doi:10.1016/j.fuel.2016.10.061Salvador, F. J., Gimeno, J., De la Morena, J., & Carreres, M. (2018). Comparison of Different Techniques for Characterizing the Diesel Injector Internal Dimensions. Experimental Techniques, 42(5), 467-472. doi:10.1007/s40799-018-0246-1Desantes, J. M., López, J. J., Carreres, M., & López-Pintor, D. (2016). Characterization and prediction of the discharge coefficient of non-cavitating diesel injection nozzles. Fuel, 184, 371-381. doi:10.1016/j.fuel.2016.07.026Leonhard, R., Warga, J., Pauer, T., Rückle, M., & Schnell, M. (2010). Solenoid common-rail injector for 1800 bar. MTZ worldwide, 71(2), 10-15. doi:10.1007/bf03227003PAYRI, R., GARCIA, J., SALVADOR, F., & GIMENO, J. (2005). Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel, 84(5), 551-561. doi:10.1016/j.fuel.2004.10.009Siebers DL. Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization. SAE Tech Pap 1999-01-0528 1999. doi:10.4271/1999-01-0528.Desantes, J. M., Salvador, F. J., Carreres, M., & Martínez-López, J. (2014). Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(4), 407-423. doi:10.1177/0954407014542627Salvador, F. J., Gimeno, J., Carreres, M., & Crialesi-Esposito, M. (2016). Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part I: Experimental mass flow rate measurements and discussion. Energy Conversion and Management, 114, 364-375. doi:10.1016/j.enconman.2016.02.042Chorążewski, M., Dergal, F., Sawaya, T., Mokbel, I., Grolier, J.-P. E., & Jose, J. (2013). Thermophysical properties of Normafluid (ISO 4113) over wide pressure and temperature ranges. Fuel, 105, 440-450. doi:10.1016/j.fuel.2012.05.059Huang, D., Simon, S. L., & McKenna, G. B. (2005). Chain length dependence of the thermodynamic properties of linear and cyclic alkanes and polymers. The Journal of Chemical Physics, 122(8), 084907. doi:10.1063/1.1852453Bell, I. H., Wronski, J., Quoilin, S., & Lemort, V. (2014). Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Industrial & Engineering Chemistry Research, 53(6), 2498-2508. doi:10.1021/ie4033999Růžička, V., & Domalski, E. S. (1993). Estimation of the Heat Capacities of Organic Liquids as a Function of Temperature using Group Additivity. I. Hydrocarbon Compounds. Journal of Physical and Chemical Reference Data, 22(3), 597-618. doi:10.1063/1.555923Zábranský, M., Kolská, Z., Růžička, V., & Domalski, E. S. (2010). Heat Capacity of Liquids: Critical Review and Recommended Values. Supplement II. Journal of Physical and Chemical Reference Data, 39(1), 013103. doi:10.1063/1.3182831Winklhofer, E., Ahmadi-Befrui, B., Wiesler, B., & Cresnoverh, G. (1992). The Influence of Injection Rate Shaping on Diesel Fuel Sprays—An Experimental Study. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 206(3), 173-183. doi:10.1243/pime_proc_1992_206_176_02Nishimura T, Satoh K, Takahashi S, Yokota K. Effects of Fuel Injection Rate on Combustion and Emission in a DI Diesel Engine. SAE Tech. Pap. 981929, 1998. doi:10.4271/981929.Benajes, J., Molina, S., De Rudder, K., & Rente, T. (2006). Influence of injection rate shaping on combustion and emissions for a medium duty diesel engine. Journal of Mechanical Science and Technology, 20(9), 1436-1448. doi:10.1007/bf02915967He, Z., Xuan, T., Xue, Y., Wang, Q., & Zhang, L. (2014). A numerical study of the effects of injection rate shape on combustion and emission of diesel engines. Thermal Science, 18(1), 67-78. doi:10.2298/tsci130810013hPayri, F., Payri, R., Bardi, M., & Carreres, M. (2014). Engine combustion network: Influence of the gas properties on the spray penetration and spreading angle. Experimental Thermal and Fluid Science, 53, 236-243. doi:10.1016/j.expthermflusci.2013.12.014Sieder, E. N., & Tate, G. E. (1936). Heat Transfer and Pressure Drop of Liquids in Tubes. Industrial & Engineering Chemistry, 28(12), 1429-1435. doi:10.1021/ie50324a027Salvador, F. J., Carreres, M., Crialesi-Esposito, M., & Plazas, A. H. (2017). Determination of critical operating and geometrical parameters in diesel injectors through one dimensional modelling, design of experiments and an analysis of variance. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 232(13), 1762-1781. doi:10.1177/0954407017735262Matsumoto S, Yamada K, Date K. Concepts and Evolution of Injector for Common Rail System. SAE Tech Pap 2012-01-1753 2012. doi:10.4271/2012-01-1753.Schöppe, D., Zülch, S., Hardy, M., Geurts, D., Jorach, R. W., & Baker, N. (2008). Delphi Common Rail system with direct acting injector. MTZ worldwide, 69(10), 32-38. doi:10.1007/bf03226918Benajes, J., Olmeda, P., Martín, J., Blanco-Cavero, D., & Warey, A. (2017). Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168-181. doi:10.1016/j.energy.2017.01.082Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837Gimeno, J., Martí-Aldaraví, P., Carreres, M., & Peraza, J. E. (2018). Effect of the nozzle holder on injected fuel temperature for experimental test rigs and its influence on diesel sprays. International Journal of Engine Research, 19(3), 374-389. doi:10.1177/1468087417751531ECN. Engine Combustion Network. Https://EcnSandiaGov/Diesel-Spray-Combustion/ 2010. www.sandia.gov/ecn/

    Modifications of a high pressure device for speed of sound measurements in liquids

    No full text
    Modifications of a measuring set for measurements of the speed of sound in liquids under elevated pressures are described. The reliability of the proposed experimental device was checked under pressures up to 100 MPa in the temperature range from 293 K to 318 K

    Turning Molecular Springs into Nano-Shock Absorbers: The Effect of Macroscopic Morphology and Crystal Size on the Dynamic Hysteresis of Water Intrusion-Extrusion into-from Hydrophobic Nanopores.

    Get PDF
    Funder: Engineering and Physical Sciences Research CouncilControlling the pressure at which liquids intrude (wet) and extrude (dry) a nanopore is of paramount importance for a broad range of applications, such as energy conversion, catalysis, chromatography, separation, ionic channels, and many more. To tune these characteristics, one typically acts on the chemical nature of the system or pore size. In this work, we propose an alternative route for controlling both intrusion and extrusion pressures via proper arrangement of the grains of the nanoporous material. To prove the concept, dynamic intrusion-extrusion cycles for powdered and monolithic ZIF-8 metal-organic framework were conducted by means of water porosimetry and in operando neutron scattering. We report a drastic increase in intrusion-extrusion dynamic hysteresis when going from a fine powder to a dense monolith configuration, transforming an intermediate performance of the ZIF-8 + water system (poor molecular spring) into a desirable shock-absorber with more than 1 order of magnitude enhancement of dissipated energy per cycle. The obtained results are supported by MD simulations and pave the way for an alternative methodology of tuning intrusion-extrusion pressure using a macroscopic arrangement of nanoporous material

    Comparison of antioxidant capacities of different types of tea using the spectroscopy methods and semi-empirical mathematical model

    Get PDF
    The antioxidant properties of different types of tea—green, black and earl grey—were investigated using the EPR spectroscopy method based on a new semi-empirical mathematical model and on a single EPR spectroscopy measurement. The obtained values of the antioxidant capacity were correlated with the bioactive ingredient content identified through the NMR spectroscopy. Moreover, an attempt was made to determine what impact on the antioxidant properties of tea does adding sugar, milk, lemon and honey have. All studied teas exhibited antioxidant properties. The best DPPH free radical scavengers were green teas. Adding sugar, milk and lemon juice to tea did not significantly impact the antioxidant properties of the infusion; adding honey, however, caused an increase in the total antioxidant capacity of the infusion. The aromatic proton content correlates positively with the antioxidant capacity value

    Mitigating Complexity: Cohesion Parameters and Related Topics. I: The Hildebrand Solubility Parameter

    No full text
    corecore