607 research outputs found

    Quantum Noise and Polarization Fluctuations in Vertical Cavity Surface Emitting Lasers

    Get PDF
    We investigate the polarization fluctuations caused by quantum noise in quantum well vertical cavity surface emitting lasers (VCSELs). Langevin equations are derived on the basis of a generalized rate equation model in which the influence of competing gain-loss and frequency anisotropies is included. This reveals how the anisotropies and the quantum well confinement effects shape the correlations and the magnitude of fluctuations in ellipticity and in polarization direction. According to our results all parameters used in the rate equations may be obtained experimentally from precise time resolved measurements of the intensity and polarization fluctuations in the emitted laser light. To clarify the effects of anisotropies and of quantum well confinement on the laser process in VCSELs we therefore propose time resolved measurements of the polarization fluctuations in the laser light. In particular, such measurements allow to distinguish the effects of frequency anisotropy and of gain-loss anisotropy and would provide data on the spin relaxation rate in the quantum well structure during cw operation as well as representing a new way of experimentally determinig the linewidth enhancement factor alpha.Comment: 16 pages and 3 Figures, RevTex, to be published in Phys. Rev.

    Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry

    Get PDF
    The development of force-responsive molecules called mechanophores is a central component of the field of polymer mechanochemistry. Mechanophores enable the design and fabrication of polymers for a variety of applications ranging from sensing to molecular release and self-healing materials. Nevertheless, an insufficient understanding of structure–activity relationships limits experimental development, and thus computation is necessary to guide the structural design of mechanophores. The constrained geometries simulate external force (CoGEF) method is a highly accessible and straightforward computational technique that simulates the effect of mechanical force on a molecule and enables the prediction of mechanochemical reactivity. Here, we use the CoGEF method to systematically evaluate every covalent mechanophore reported to date and compare the predicted mechanochemical reactivity to experimental results. Molecules that are mechanochemically inactive are also studied as negative controls. In general, mechanochemical reactions predicted with the CoGEF method at the common B3LYP/6-31G* level of density functional theory are in excellent agreement with reactivity determined experimentally. Moreover, bond rupture forces obtained from CoGEF calculations are compared to experimentally measured forces and demonstrated to be reliable indicators of mechanochemical activity. This investigation validates the CoGEF method as a powerful tool for predicting mechanochemical reactivity, enabling its widespread adoption to support the developing field of polymer mechanochemistry. Secondarily, this study provides a contemporary catalog of over 100 mechanophores developed to date

    Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry

    Get PDF
    The development of force-responsive molecules called mechanophores is a central component of the field of polymer mechanochemistry. Mechanophores enable the design and fabrication of polymers for a variety of applications ranging from sensing to molecular release and self-healing materials. Nevertheless, an insufficient understanding of structure–activity relationships limits experimental development, and thus computation is necessary to guide the structural design of mechanophores. The constrained geometries simulate external force (CoGEF) method is a highly accessible and straightforward computational technique that simulates the effect of mechanical force on a molecule and enables the prediction of mechanochemical reactivity. Here, we use the CoGEF method to systematically evaluate every covalent mechanophore reported to date and compare the predicted mechanochemical reactivity to experimental results. Molecules that are mechanochemically inactive are also studied as negative controls. In general, mechanochemical reactions predicted with the CoGEF method at the common B3LYP/6-31G* level of density functional theory are in excellent agreement with reactivity determined experimentally. Moreover, bond rupture forces obtained from CoGEF calculations are compared to experimentally measured forces and demonstrated to be reliable indicators of mechanochemical activity. This investigation validates the CoGEF method as a powerful tool for predicting mechanochemical reactivity, enabling its widespread adoption to support the developing field of polymer mechanochemistry. Secondarily, this study provides a contemporary catalog of over 100 mechanophores developed to date

    Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency

    Get PDF
    Includes bibliographical references (page 209).Index-guided vertical cavity top-surface emitting laser diodes have been fabricated from an all epitaxial structure with conducting mirrors by selective lateral oxidation of AlGaAs. Low voltage, a 78% slope efficiency, and a 350μA threshold current in a single device combine to yield a maximum power conversion efficiency of 50% at less than a 2mA drive current. The device operates in a single mode up to 1.5mW

    Vectorial dissipative solitons in vertical-cavity surface-emitting Lasers with delays

    Full text link
    We show that the nonlinear polarization dynamics of a vertical-cavity surface-emitting laser placed into an external cavity leads to the formation of temporal vectorial dissipative solitons. These solitons arise as cycles in the polarization orientation, leaving the total intensity constant. When the cavity round-trip is much longer than their duration, several independent solitons as well as bound states (molecules) may be hosted in the cavity. All these solutions coexist together and with the background solution, i.e. the solution with zero soliton. The theoretical proof of localization is given by the analysis of the Floquet exponents. Finally, we reduce the dynamics to a single delayed equation for the polarization orientation allowing interpreting the vectorial solitons as polarization kinks.Comment: quasi final resubmission version, 12 pages, 9 figure

    Risk transfer policies and climate-induced immobility among smallholder farmers

    Get PDF
    Climate change is anticipated to impact smallholder farmer livelihoods substantially. However, empirical evidence is inconclusive regarding how increased climate stress affects smallholder farmers’ deployment of various livelihood strategies, including rural–urban migration. Here we use an agent-based model to show that in a South Asian agricultural community experiencing a 1.5 oC temperature increase by 2050, climate impacts are likely to decrease household income in 2050 by an average of 28%, with fewer households investing in both economic migration and cash crops, relative to a stationary climate. Pairing a small cash transfer with risk transfer mechanisms significantly increases the adoption of migration and cash crops, improves community incomes and reduces community inequality. While specific results depend on contextual factors such as risk preferences and climate risk exposure, these interventions are robust in improving adaptation outcomes and alleviating immobility, by addressing the intersection of risk aversion, financial constraints and climate impacts
    corecore