Supporting Information for

Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry

Isabel M. Klein,[‡] Corey C. Husic,[‡] Dávid P. Kovács,[†] Nicolas J. Choquette, and Maxwell J. Robb*

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States

[‡]These authors contributed equally. [†]Present address: Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.

*Email: mrobb@caltech.edu

Table of Contents

I. General Methods	S5
II. Supplementary Figures	S6
III. Summaries of Individual CoGEF Calculations	S12
Compound 1	S12
Compound 2	S13
Compound 3	S14
Compound 4	S15
Compound 5	S16
Compound 6	S17
Compound 7	S18
Compound 8	S19
Compound 9	S20
Compound 10	S21
Compound 11	S22
Compound 12	S23
Compound 12'	S24
Compound 13	S25
Compound 14	S27
Compound 15	S26
Compound 16	S28
Compound 17	S29
Compound 18	S30

Compound 19	S31
Compound 20	S32
Compound 21	S33
Compound 22	S34
Compound 23	S35
Compound 24	S36
Compound 25	S37
Compound 26	S38
Compound 27	S39
Compound 28	S40
Compound 29	S41
Compound 30	S42
Compound 31	S43
Compound 32	S44
Compound Con1	S45
Compound Con2	S46
Compound 33	S47
Compound 34	
Compound 35	S49
Compound 36	
Compound 37	
Compound 38.	
Compound 39	
Compound 40	
Compound 41	
Compound 42	S56
Compound 43.	
Compound 44	S58
Compound 45	S59
Compound 46	
Compound 47	S61
Compound Con3	
Compound Con4	S63
Compound Con5	S64
Compound 48	S65
Compound 48'	
Compound 49	S67
Compound 49'	S68
Compound 50	S69
Compound 51	
Compound 52	
Compound 53	
Compound 54	
Compound 55	

Compound 56	S75
Compound 57	S76
Compound 58	
Compound 59	S78
Compound 60	S79
Compound 61	S80
Compound 62	S81
Compound 63	S82
Compound 64	
Compound 65	S84
Compound 66	S85
Compound 67	S86
Compound 60 (polar solvent)	
Compound Con6	
Compound 68	S89
Compound 69	
Compound 70	
Compound 71	
Compound 72	
Compound 73	
Compound 74	
Compound 74 (polar solvent)	
Compound 75	
Compound 76	
Compound 77	
Compound 78	S100
Compound 79	S101
Compound 80	S102
Compound 81	S103
Compound 82	S104
Compound 83	S105
Compound 84	S106
Compound 85	S107
Compound 86	S108
Compound 87	S109
Compound 88	S110
Compound 89	S111
Compound Con7	S112
Compound Con8	S113
Compound 90	S114
Compound 91	S115
Compound 92	S116
Compound 93	S117
Compound 94	S118

Compound 95
Compound 96
Compound 97
Compound 98
Compound 99
Compound 100
Compound 101
Compound 102
Compound 103
Compound 104
Compound 105
Compound 106
Compound 107
Compound 108
Compound 108'
Compound 109
Compound 110
Compound 111
Compound 112
Compound 113
Compound 114
Compound 115
Compound 115 (polar solvent)
Compound 116
Compound 116 (polar solvent)
Compound 117
Compound 117 (polar solvent)
Compound 118
Compound 118 (polar solvent)
Compound 119
Compound 110 (polar solvent)
Compound 120
Compound 120 (polar solvent)

I. General Methods

CoGEF calculations were performed using Spartan '18 Parallel Suite according to previously reported methods.¹ Chemical structures were composed in ChemDraw, saved as .mol files, and then imported into Spartan. Structures were truncated to include tethers that accurately reflect the structure of the molecules used in the experimental studies. Ground state energies were calculated using DFT at the B3LYP/6-31G* level of theory in vacuum, unless specified otherwise. For the three mechanophores in the heterolytic category, CoGEF calculations were also performed using a polarizable continuum model (dielectric constant of 37) to simulate a polar solvent. Starting from the equilibrium geometry of the unconstrained molecule (relative energy = 0 kJ/mol), the distance between the terminal anchor atoms of the truncated structure was increased in increments of 0.05 Å and the energy was minimized at each step. This operation was carried out automatically using the Energy Profile calculation in Spartan. Calculations were run until a chemical transformation was predicted to occur, as evidenced by the rupture and reorganization of one or more covalent bonds. In some cases, an initial equilibrium conformer calculation was performed using Molecular Mechanics (MMFF) before performing the steps outlined above. The maximum number of geometry optimization cycles was increased beyond the default value using the GEOMETRYCYCLE option to ensure convergence at each step in the CoGEF profile.

Determination of F_{max} . The maximum force predicted for each mechanochemical transformation was calculated from the slope between contiguous points in the energy–displacement curve. In most cases, F_{max} coincides with the displacement immediately prior to a discontinuity in the relative energy profile. The value of F_{max} is thus calculated from the slope between the two data points preceding the abrupt attenuation in energy. More rarely, a continuous change in energy is observed that approaches an apparent plateau value at long displacements. In these cases, F_{max} occurs at the inflection point in the CoGEF curve. The value of the slope is divided by the Avogadro constant and adjusted to provide force in units of nJ/m (nN).

Determination of E_{max} . The maximum energy relative to the energy of the unconstrained molecule at equilibrium is reported as E_{max} . The value of E_{max} is determined from the CoGEF curve at the displacement corresponding to F_{max} . Typically, this means that E_{max} represents the highest relative energy on the CoGEF curve; however, for instances in which the CoGEF profile exhibits a sigmoidal shape and/or a discontinuity is absent, E_{max} corresponds to the relative energy at the inflection point.

Determination of Force–Bond Angle. Force–bond angles were calculated according to the previously described method using structural models from CoGEF calculations at the displacement corresponding to F_{max} .² The external force vector was approximated using the coordinates of the two terminal atoms that define the distance constraint in the CoGEF calculation.

^{(1) (}a) Beyer, M. K. The Mechanical Strength of a Covalent Bond Calculated by Density Functional Theory. *J. Chem. Phys.* **2000**, *112*, 7307–7312. (b) Kryger, M. J.; Munaretto, A. M.; Moore, J. S. Structure-Mechanochemical Activity Relationships for Cyclobutane Mechanophores. *J. Am. Chem. Soc.* **2011**, *133*, 18992–18998.

⁽²⁾ Robb, M. J.; Kim, T. A.; Halmes, A. J.; White, S. R.; Sottos, N. R.; Moore, J. S. Regioisomer-Specific Mechanochromism of Naphthopyran in Polymeric Materials. *J. Am. Chem. Soc.* **2016**, *138*, 12328–12331.

II. Supplementary Figures

Figure S1. CoGEF results for four possible isomers of a hetero-Diels–Alder adduct corresponding to the reactive subunits of reported mechanophore **36**. All isomers are predicted to undergo C–S bond scission rather than the formal retro-[4+2] cycloaddition reaction.

Figure S2. CoGEF calculations performed in an alternative compression mode for head-to-tail anthracene dimer mechanophores (A) **48** and (B) **49**. The distance between carbon atoms labeled with a blue dot was decreased incrementally starting from the force-free equilibrium geometry. At each step, the geometry was optimized at the B3LYP/6-31G* level of DFT. Both molecules are predicted to undergo a formal retro-[4+4] cycloaddition reaction upon simulated compression. The transformation proceeds through an apparent stepwise pathway suggesting an intermediate with diradicaloid character.

Figure S3. Investigation of regiochemical effects on the predicted mechanochemical reactivity of spiropyran **81**. (A) Changing the pulling position results in the anticipated scission of the C–O pyran bond leading to formation of the merocyanine. (B) Electrostatic potential map of the product predicted by CoGEF (*para*-pulling) indicating heterolytic fragmentation of the C–N bond. (C) CoGEF profiles associated with the schemes in panel A. (D, E) Visible absorption spectra calculated at the B3LYP/6-31G* level of TD-DFT for the product resulting from C–N bond scission, and the expected merocyanine species.

Figure S4. Summary of (A) E_{max} values and (B) force–bond angles determined using the CoGEF method for each mechanochemical reaction class. The CoGEF results for control structures are universally indistinguishable from the mechanophores when alternative quantitative metrics E_{max} and force–bond angle are compared, indicating that these metrics are poor predictors of mechanochemical activity. Data from calculations that are inconsistent with reported experimentally determined reactivity are excluded.

Figure S5. Relationship between calculated values of (A) E_{max} and (B) force–bond angle with the calculated values of F_{max} determined with the CoGEF method at the B3LYP/6-31G* level of density functional theory. There is a positive correlation between values of E_{max} and F_{max} , while there is no apparent correlation between force–bond angle and values of F_{max} .

Figure S6. CoGEF calculations performed using unrestricted DFT (UB3LYP/6-31G*) on representative mechanophores for which CoGEF calculations at the B3LYP/6-31G* level of DFT predict reactions that are inconsistent with the reported experimental behavior. Use of the UB3LYP functional has minimal influence on the results of the CoGEF simulations. The same chemical transformations are predicted in each case.

Figure S7. Comparison of CoGEF calculations performed on representative mechanophores at the B3LYP/6-31G* level of DFT and using a dispersion-corrected functional (B3LYP-D3/6-31G*). Use of the dispersion-corrected B3LYP-D3 functional has minimal influence on the results of the CoGEF simulations. The same chemical transformations are predicted in each case.

III. Summaries of Individual CoGEF Calculations

A summary of the results of each individual CoGEF calculation are presented on the pages below. All calculations were performed using DFT at the B3LYP/6-31G* level of theory in vacuum, unless specified otherwise. A reaction scheme depicts the structure of the truncated molecule and the product(s) predicted from the CoGEF calculation. The atoms colored blue indicate the anchor positions (i.e., pulling points) for defining the distance constraint and the bonds that are predicted to cleave are colored red. Representative images of computed structures at critical points in the CoGEF profile are included that depict the force-free equilibrium geometry as well as the structure(s) immediately before and after bond cleavage events. The length of the distance constraint is included below each computed structure and the corresponding positions on the CoGEF calculations in the heterolytic category. The calculated values of F_{max} , E_{max} , and force-bond angle are tabulated for each calculation. Note that the former bonds persist as artifacts in Spartan after a reaction is predicted to occur. For references to the primary literature describing the experimental reactivity of each compound, refer to the tables in the main text.

20.867 Å

(ii) Immediately Prior to First Bond Cleavage

10.045 Å

(iii) Immediately After First Bond Cleavage

(iv) Immediately Before Second Bond Cleavage

(v) Immediately After Second Bond Cleavage

10.695 Å

Force-Bond Angle 30°

8

(i) Equilibrium Geometry

(ii) Immediately Prior to First Bond Cleavage

(iii) Immediately After First Bond Cleavage

19.056 Å

(iv) Immediately Prior to Second Bond Cleavage

20.106 (v) Immediately After Second Bond Cleavage

(i) Equilibrium Geometry

(ii) Immediately Prior to First Bond Cleavage

(iii) Immediately After First Bond Cleavage

18.212 Å

(i) Equilibrium Geometry

Summary of CoGEF Results

Force-Bond Angle

F_{max}

E_{max}

4.4 nN 364 kJ/mol

2.7°

(ii) Immediately Prior to First Bond Cleavage

S21

Summary of CoGEF Results			
	cyclobutane	gDCC	
F _{max}	4.7 nN	3.8 nN	
E _{max}	395 kJ/mol	291 kJ/mol	
Force-Bond Angle	2.1°	0.4°	

12.935 Å

(iv) Immediately Before Second Bond Cleavage

(v) Immediately After Second Bond Cleavage

22.935 Å

(i) Equilibrium Geometry

(iii) Immediately After Bond Cleavage

(i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

10.319 Å

(iii) Immediately After Bond Cleavage

10.369 Å

Summary of CoGEF Results F_{max} 5.6 nN E_{max} 633 kJ/mol Force-Bond Angle 26° (i) Equilibrium Geometry

.CH₃

13.066 Å

(ii) Immediately Prior to First Bond Cleavage

15.866 Å

(iii) Immediately After First Bond Cleavage

15.916 Å

(iv) Immediately Before Second Bond Cleavage

(v) Immediately After Second Bond Cleavage

29.457 Å

(ii) Immediately Prior to First Bond Cleavage (iii) Immediately After First Bond Cleavage (i) Equilibrium Geometry 10.116 Å 10.066 Å 6.366 Å (v) Immediately Prior to Second Bond Cleavage (vi) Immediately After Second Bond Cleavage 12.216 Å 12.266 Å (iv) 500 400 Summary of CoGEF Results 3.3 nN **F**_{max} (ii) 300 **E**max 244 kJ/mol Force-Bond Angle 0.0° 200 (iii) 100 (v) 190 (i) 0 5 Ö 2 3 4 6 Ż 1

Displacement from Equilibrium (Å)

Relative Energy (kJ/mol)

6.351 Å

(ii) Immediately Prior to First Bond Cleavage

10.051 Å

(v) Immediately Prior to Second Bond Cleavage

11.351 Å

Summary of CoGEF Results			
F _{max}	3.3 nN		
E _{max}	241 kJ/mol		
Force-Bond Angle	1.0°		

S30

S31

22.600 Å

20.762 Å

20.378 Å

19.704 Å

5.552 Å

(v) Immediately After Second Bond Cleavage

5.602 Å

(i) Equilibrium Geometry

(ii) Immediately Prior to First Bond Cleavage

(iii) Immediately After First Bond Cleavage

(iv) Immediately Prior to Second Bond Cleavage

5.551 Å

(v) Immediately After Second Bond Cleavage

5.601 Å

Summary of CoGEF Results

Force-Bond Angle

F_{max}

E_{max}

4.4 nN

4.6 °

345 kJ/mol

(i) Equilibrium Geometry

CH₃

(ii) Immediately Prior to Bond Cleavage

...<mark>C</mark>H₃

CoGEF

H₃C

Summary of CoGEF Results	
F _{max}	5.4 nN
E _{max}	331 kJ/mol
Force-Bond Angle	24°

(i) Equilibrium Geometry

(ii) Immediately Prior to First Bond Cleavage

5.119 Å

(iii) Immediately After First Bond Cleavage

(iv) Immediately Prior to Second Bond Cleavage

5.719 Å

(v) Immediately After Second Bond Cleavage

5.769 Å

15.409 Å

25.468 Å

24.253 Å

4

600

500

400

300

200

100

0 ද්ය 0 (i)

-<^

1

2

Displacement from Equilibrium (Å)

Summary of CoGEF Results

Force-Bond Angle

F_{max} E_{max} 3

6.2 nN

78°

676 kJ/mol

Relative Energy (kJ/mol)

(ii) Immediately Prior to Bond Cleavage

20.058 Å

24.243 Å

27.009 Å

CH3

14.718 Å

532 A

(i) Equilibrium Geometry

13.422 Å

(ii) Immediately Prior to Bond Cleavage

15.922 Å

15.972 Å

15.983 Å

264 kJ/mol **E**_{max}

Force-Bond Angle 21° (i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

14.524 Å

(i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

16.041 Å

20.375 Å

16.037 Å

25.54 Å

20.871 Å

.

13.761 Å

(ii) Immediately Prior to Bond Cleavage

Summary of CoGEF Results F_{max} 6.0 nN E_{max} 650 kJ/mol Force-Bond Angle 39°

(i) Equilibrium Geometry

(ii) Immediately Prior to First Bond Cleavage

13.642 Å

(iii) Immediately After First Bond Cleavage

13.692 Å

(iv) Immediately Prior to Second Bond Cleavage

(v) Immediately After Second Bond Cleavage

14.942 Å

(ii) Immediately Prior to Bond Cleavage

13.128 Å

13.178 Å

Summary of CoGEF Results

Force-Bond Angle

F_{max}

Emax

2.2 nN

0.5°

167 kJ/mol

(i) Equilibrium Geometry

6.033 Å

(ii) Immediately Prior to First Bond Cleavage

(iii) Immediately After First Bond Cleavage

(iv) Immediately Prior to Second Bond Cleavage

7.824 Å

(ii) Immediately Prior to Bond Cleavage

10.174 Å

10.224 Å

(ii) Immediately Prior to Bond Cleavage

10.226 Å

7.816Å

(ii) Immediately Prior to Bond Cleavage

10.566 Å

(i) Equilibrium Geometry

10.675 Å

(ii) Immediately Prior to Bond Cleavage

12.625 Å

(ii) Immediately Prior to Bond Cleavage

7.421 Å

7.471 Å

Summary of CoGEF Results F_{max} 5.7 nN E_{max} 448 kJ/mol Force-Bond Angle 31° (i) Equilibrium Geometry

8.972 Å

(ii) Immediately Prior to Bond Cleavage

12.272 Å

(iii) Immediately After Bond Cleavage

12.322 Å

6.904 Å

(ii) Immediately Prior to Bond Cleavage

8.604 Å

6.787 Å (ii) Immediately Prior to Bond Cleavage

8.537 Å

(iii) Immediately After Bond Cleavage

8.587 Å

Emax 202 kJ/mol

Force-Bond Angle 3.9°

3

(i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

9.982 Å

10.032 Å

Summary of CoGEF Results F_{max} 5.6 nN E_{max} 416 kJ/mol Force-Bond Angle 0.1°

(ii) Immediately Prior to Bond Cleavage

10.22 Å

10.27 Å

Summary of CoGEF Results F_{max} 6.4 nN E_{max} 729 kJ/mol Force-Bond Angle 0.8° (i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

14.163 Å

Summary of CoGEF Results F_{max} 3.7 nN E_{max} 282 kJ/mol Force/Bond angle 3.2° (i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

10.217 Å

Summary of CoGEF Results F_{max} 4.1 nN E_{max} 186 kJ/mol Force/Bond angle 17° (i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

7.663 A

7.713 Å

(i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

9.636 Å

(iii) Immediately After Bond Cleavage

9.686 Å

E_{max} 244 kJ/mol

Force-Bond Angle 2.8°

7.011 Å

(ii) Immediately Prior to Bond Cleavage

10.161 Å

10.211 Å

Summary of CoGEF Results	
F _{max}	3.7 nN
E _{max}	367 kJ/mol
Force/Bond angle	0.0°

6.123 Å

(ii) Prior to Bond Cleavage

(iii) After Bond Cleavage

(iv) After Formation of Double Bonds

8.573 Å

(i) Equilibrium Geometry

0.275 A

(ii) Immediately Prior to Bond Cleavage

(iii) Immediately After Bond Cleavage

10.225 Å

16.698 Å

(ii) Immediately Prior to Bond Cleavage

14.500 Å

15.972 Å

Force-Bond Angle 31°

(i) Equilibrium Geometry

14.303 Å

(ii) Immediately Prior to Bond Cleavage

18.853 Å

(i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

(iii) Immediately After Bond Cleavage

15.025 Å

(ii) Immediately Prior to Bond Cleavage

14.844 Å

14.894 Å

Force-Bond Angle 47°

(i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

16.897 Å

16.947 Å

(ii) Immediately Prior to Bond Cleavage

Summary of CoGEF Results

Force-Bond Angle

F_{max}

E_{max}

4.8 nN

35°

386 kJ/mol

(i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

18.687 Å

18.737 Å

max 4.5 min

Emax 418 kJ/mol

Force-Bond Angle 29°

(i) Equilibrium Geometry 13.325 Å

(ii) Immediately Prior to Bond Cleavage

19.925 Å

19.975 Å

(i) Equilibrium Geometry

13.160 Å

(ii) Immediately Prior to Bond Cleavage

20.160 Å

(i) Equilibrium Geometry

13.153 Å

(ii) Immediately Prior to Bond Cleavage

17.503 Å

(iii) Immediately After Bond Cleavage

(i) Equilibrium Geometry

11.651 Å

(ii) Immediately Prior to Bond Cleavage

19.601 Å

19.651 Å

Summary of CoGEF Results		
F _{max}	3.7 nN	
E _{max}	334 kJ/mol	
Force-Bond Angle	33°	

(i) Equilibrium Geometry

11.190 Å

(ii) Immediately Prior to Bond Cleavage

13.054 Å

(ii) Immediately Prior to Bond Cleavage

17.404 Å

The results presented here correspond to the (S,S)-isomer of compound **82**. The CoGEF results for the (R,S)-isomer are similar:

24.009 Å

24.735 Å

(i) Equilibrium Geometry

5.818 Å

(ii) Immediately Prior to Bond Cleavage

7.068 Å

E_{max} 169 kJ/mol Force-Bond Angle 44° (i) Equilibrium Geometry

16.559 Å

(ii) Immediately Prior to Bond Cleavage

18.209 Å

18.259 Å

18.800Å

15.307 Å (ii) Immediately Prior to Bond Cleavage

17.507 Å

17.557 Å

18.709 Å

H₃C

(ii) Immediately Prior to First Bond Cleavage

(iii) Immediately After First Bond Cleavage

(iv) Immediately Prior to Second Bond Cleavage

(v) Immediately After Second Bond Cleavage

(i) Equilibrium Geometry

10.904 Å

(ii) Immediately Prior to First Bond Cleavage

13.104 Å

(iii) Immediately After First Bond Cleavage

(iv) Immediately Prior to Second Bond Cleavage

(v) Immediately After Second Bond Cleavage

14.654 Å

(vi) Immediately Prior to Disproportionation

15.404 Å

(vii) Immediately After Disproportionation

15.454 Å

Summary of CoGEF Results		
F _{max}	4.9 nN	
E _{max}	771 kJ/mol	
Force-Bond Angle	1.3°	

Summary of CoGEF Results

Force-Bond Angle

F_{max}

E_{max}

4.2 nN

17°

455 kJ/mol

(i) Equilibrium Geometry

15.764 Å

(ii) Immediately Prior to First Bond Cleavage

18.214 Å

(iii) Immediately After First Bond Cleavage

18.264 Å

(iv) Immediately Before Second Bond Cleavage

19.514 Å

(v) Immediately After Second Bond Cleavage

19.562 Å

S129

Summary of CoGEF Results		
F _{max}	3.4 nN	
E _{max}	409 kJ/mol	
Force-Bond Angle	5.9°	

(ii) Immediately Prior to First Bond Cleavage

17.772 Å

(iii) Immediately After First Bond Cleavage

17.822 Å

(iv) Immediately Before Second Bond Cleavage

18.922 Å

(v) Immediately After Second Bond Cleavage

18.972 Å

S131

Summary of CoGEF Results		
F _{max}	5.1 nN	
E _{max}	536 kJ/mol	
Force-Bond Angle	43°	

15.861 Å

(ii) Immediately Prior to Bond Cleavage

20.261 Å

Summary of CoGEF Results	
F _{max}	4.3 nN
E _{max}	258 kJ/mol
E _{max}	258 kJ/mol

Force-Bond Angle 40°

(i) Equilibrium Geometry

16.537 Å

(ii) Immediately Prior to Bond Cleavage

18.537 Å

18.587 Å

(ii) Immediately Prior to Bond Cleavage

15.41 Å

Summary of CoGEF Results		
F _{max}	4.7 nN	
E _{max}	369 kJ/mol	
Force-Bond Angle	15°	

(iii) Immediately After Bond Cleavage

4.3 nN

24°

472 kJ/mol

F_{max} E_{max}

Force-Bond Angle

(i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

19.076 Å

(i) Equilibrium Geometry

8.199 Å

(ii) Immediately Prior to Bond Cleavage

9.699 Å

9.749 Å

F_{max}

E_{max}

Force-Bond Angle

6.1 nN

37°

611 kJ/mol

(i) Equilibrium Geometry

15.877 Å

(ii) Immediately Prior to Bond Cleavage

19.227 Å

17.125 Å

12.940 Å

(ii) Immediately Prior to Bond Cleavage

17.472 Å

E_{max} 507 kJ/mol

Force-Bond Angle 32°

15.649 Å

Лe

17.655 Å

E_{max} 368 kJ/mol Force-Bond Angle 32°

4.6 nN

F_{max}

(i) Equilibrium Geometry

(ii) Immediately Prior to Bond Cleavage

(iii) Immediately After Bond Cleavage

