64 research outputs found

    Ecocontrastografia epatica nel cane: studi preliminari

    Get PDF
    The purpose of this study is to determine the normal perfusion dynamics in the canine liver using sulphur hexafluoride (Sonovue\uae) as contrast medium. Its effects have been investigated measuring the changes in liver grayscale enhancement in 11 dogs. Each dog received two separate bolus contrast injection (0.03 ml/kg and 0.06 ml/kg). Two different setup of the ultrasound machine were considered. Time/Mean Pixel Value curves were generated for selected regions of the liver, at 2 and at 4 cm of depth. The influence of cardiac output, heart rate and respiratory rate upon the arterial phase time, portal phase time, equilibrium phase, time to peak, time to 50% peak and maximum pixel value were investigate

    Pseudonymization risk analysis in distributed systems

    Get PDF
    In an era of big data, online services are becoming increasingly data-centric; they collect, process, analyze and anonymously disclose growing amounts of personal data in the form of pseudonymized data sets. It is crucial that such systems are engineered to both protect individual user (data subject) privacy and give back control of personal data to the user. In terms of pseudonymized data this means that unwanted individuals should not be able to deduce sensitive information about the user. However, the plethora of pseudonymization algorithms and tuneable parameters that currently exist make it difficult for a non expert developer (data controller) to understand and realise strong privacy guarantees. In this paper we propose a principled Model-Driven Engineering (MDE) framework to model data services in terms of their pseudonymization strategies and identify the risks to breaches of user privacy. A developer can explore alternative pseudonymization strategies to determine the effectiveness of their pseudonymization strategy in terms of quantifiable metrics: i) violations of privacy requirements for every user in the current data set; ii) the trade-off between conforming to these requirements and the usefulness of the data for its intended purposes. We demonstrate through an experimental evaluation that the information provided by the framework is useful, particularly in complex situations where privacy requirements are different for different users, and can inform decisions to optimize a chosen strategy in comparison to applying an off-the-shelf algorithm

    A variable kinematic doubly-curved MITC9 shell element for the analysis of laminated composites

    Get PDF
    The present article considers the linear static analysis of composite shell structures with double-curvature geometry by means of a shell finite element with variable through-the-thickness kinematic. The refined models used are grouped in the Unified Formulation by Carrera (CUF) and they permit the distribution of displacements and stresses along the thickness of the multilayered shell to be accurately described. The shell element has nine nodes and the mixed interpolation of tensorial components (MITC) method is used to contrast the membrane and shear locking phenomenon. The governing equations are derived from the principle of virtual displacement (PVD) and the finite element method (FEM) is employed to solve them. Cross-ply spherical shells with simply-supported edges and subjected to bi-sinusoidal pressure are analyzed. Various laminations, thickness ratios, and curvature ratios are considered. The results, obtained with different theories contained in the CUF, are compared with both the elasticity solutions given in the literature and the analytical solutions obtained using the CUF and the Navier's method. From the analysis, one can conclude that the shell element based on the CUF is very efficient and its use is mandatory with respect to the classical models in the study of composite structures. Finally, shells with different lamination, boundary conditions, and loads are also analyzed using high-order layer-wise theories in order to provide FEM benchmark solution

    Analysis of laminated doubly-curved shells by alayerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations

    No full text
    In this paper, the static and free vibration analysis of laminated shells is performed by radial basis functions collocation, according to a sinusoidal shear deformation theory (SSDT). The SSDT theory accounts for through-the-thickness deformation, by considering a sinusoidal evolution of all displacements with the thickness coordinate. The equations of motion and the boundary conditions are obtained by the Carrera's Unified Formulation, and further interpolated by collocation with radial basis functions

    An isogeometric method for the Reissner-Mindlin plate bending problem

    Full text link
    We present a new isogeometric method for the discretization of the Reissner-Mindlin plate bending problem. The proposed scheme follows a recent theoretical framework that makes possible to construct a space of smooth discrete deflections WhW_h and a space of smooth discrete rotations \Rots_h such that the Kirchhoff contstraint is exactly satisfied at the limit. Therefore we obtain a formulation which is natural from the theoretical/mechanical viewpoint and locking free by construction

    Analysis of composite plates by a unified formulation-cell based smoothed finite element method and field consistent elements

    Get PDF
    In this article, we combine Carrera’s Unified Formulation (CUF) [13] and [7] and cell based smoothed finite element method [28] for studying the static bending and the free vibration of thin and thick laminated plates. A 4-noded quadrilateral element based on the field consistency requirement is used for this study to suppress the shear locking phenomenon. The combination of cell based smoothed finite element method and field consistent approach with CUF allows a very accurate prediction of field variables. The accuracy and efficiency of the proposed approach are demonstrated through numerical experiments
    corecore