685 research outputs found

    Lack of correlation of stem cell markers in breast cancer stem cells

    Get PDF
    BACKGROUND: Various markers are used to identify the unique sub-population of breast cancer cells with stem cell properties. Whether these markers are expressed in all breast cancers, identify the same population of cells, or equate to therapeutic response is controversial. METHODS: We investigated the expression of multiple cancer stem cell markers in human breast cancer samples and cell lines in vitro and in vivo, comparing across and within samples and relating expression with growth and therapeutic response to doxorubicin, docetaxol and radiotherapy. RESULTS: CD24, CD44, ALDH and SOX2 expression, the ability to form mammospheres and side-population cells are variably present in human cancers and cell lines. Each marker identifies a unique rather than common population of cancer cells. In vivo, cells expressing these markers are not specifically localized to the presumptive stem cell niche at the tumour/stroma interface. Repeated therapy does not consistently enrich cells expressing these markers, although ER-negative cells accumulate. CONCLUSIONS: Commonly employed methods identify different cancer cell sub-populations with no consistent therapeutic implications, rather than a single population of cells. The relationships of breast cancer stem cells to clinical parameters will require identification of specific markers or panels for the individual cancer

    Mathematical modeling of the metastatic process

    Full text link
    Mathematical modeling in cancer has been growing in popularity and impact since its inception in 1932. The first theoretical mathematical modeling in cancer research was focused on understanding tumor growth laws and has grown to include the competition between healthy and normal tissue, carcinogenesis, therapy and metastasis. It is the latter topic, metastasis, on which we will focus this short review, specifically discussing various computational and mathematical models of different portions of the metastatic process, including: the emergence of the metastatic phenotype, the timing and size distribution of metastases, the factors that influence the dormancy of micrometastases and patterns of spread from a given primary tumor.Comment: 24 pages, 6 figures, Revie

    An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis

    Get PDF
    Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.Comment: 54 pages (19 pages main text; 11 Figures; 26 pages of supplementary information). Revised after critical reviews. Accepted for Publication in PLoS ON

    Cellular shear adhesion force measurement and simultaneous imaging by atomic force microscope

    Get PDF
    This paper presents a sensitive and fast cellular shear adhesion force measurement method using an atomic force microscope (AFM). In the work, the AFM was used both as a tool for the imaging of cells on the nano-scale and as a force sensor for the measurement of the shear adhesion force between the cell and the substrate. After the cell imaging, the measurement of cellular shear adhesion forces was made based on the different positions of the cell on the nano-scale. Moreover, different pushing speeds of probe and various locations of cells were used in experiments to study their influences. In this study, the measurement of the cell adhesion in the upper portion of the cell is different from that in the lower portion. It may reveal that the cancer cells have the metastasis tendency after cultured for 16 to 20 hours, which is significant for preventing metastasis in the patients diagnosed with early cancer lesions. Furthermore, the cellular shear adhesion forces of two types of living cancer cells were obtained based on the measurements of AFM cantilever deflections in the torsional and vertical directions. The results demonstrate that the shear adhesion force of cancer cells is twice as much as the same type of cancer cells with TRAIL. The method can also provide a way for the measurement of the cellular shear adhesion force between the cell and the substrate, and for the simultaneous exploration of cells using the AFM imaging and manipulatio

    Hakai reduces cell-substratum adhesion and increases epithelial cell invasion

    Get PDF
    [Abstract] Background. The dynamic regulation of cell-cell adhesions is crucial for developmental processes, including tissue formation, differentiation and motility. Adherens junctions are important components of the junctional complex between cells and are necessary for maintaining cell homeostasis and normal tissue architecture. E-cadherin is the prototype and best-characterized protein member of adherens junctions in mammalian epithelial cells. Regarded as a tumour suppressor, E-cadherin loss is associated with poor prognosis in carcinoma. The E3 ubiquitin-ligase Hakai was the first reported posttranslational regulator of the E-cadherin complex. Hakai specifically targetted E-cadherin for internalization and degradation and thereby lowered epithelial cell-cell contact. Hakai was also implicated in controlling proliferation, and promoted cancer-related gene expression by increasing the binding of RNA-binding protein PSF to RNAs encoding oncogenic proteins. We sought to investigate the possible implication of Hakai in cell-substratum adhesions and invasion in epithelial cells. Methods. Parental MDCK cells and MDCK cells stably overexpressing Hakai were used to analyse cell-substratum adhesion and invasion capabilities. Western blot and immunofluoresecence analyses were performed to assess the roles of Paxillin, FAK and Vinculin in cell-substratum adhesion. The role of the proteasome in controlling cell-substratum adhesion was studied using two proteasome inhibitors, lactacystin and MG132. To study the molecular mechanisms controlling Paxillin expression, MDCK cells expressing E-cadherin shRNA in a tetracycline-inducible manner was employed. Results. Here, we present evidence that implicate Hakai in reducing cell-substratum adhesion and increasing epithelial cell invasion, two hallmark features of cancer progression and metastasis. Paxillin, an important protein component of the cell-matrix adhesion, was completely absent from focal adhesions and focal contacts in Hakai-overexpressing MDCK cells. The expression of Paxillin was found to be regulated by a proteasome-independent mechanism, possibly due to the decreased abundance of E-cadherin. Conclusions. Taken together, these results suggest that Hakai may be involved in two hallmark aspects of tumour progression, the lowering cell-substratum adhesion and the enhancement of cell invasion.Xunta de Galicia; PS09/24Xunta de Galicia; 10CSA916023P

    Dunning rat prostate adenocarcinomas and alternative splicing reporters: powerful tools to study epithelial plasticity in prostate tumors in vivo

    Get PDF
    Using alternative splicing reporters we have previously observed mesenchymal epithelial transitions in Dunning AT3 rat prostate tumors. We demonstrate here that the Dunning DT and AT3 cells, which express epithelial and mesenchymal markers, respectively, represent an excellent model to study epithelial transitions since these cells recapitulate gene expression profiles observed during human prostate cancer progression. In this manuscript we also present the development of two new tools to study the epithelial transitions by imaging alternative splicing decisions: a bichromatic fluorescence reporter to evaluate epithelial transitions in culture and in vivo, and a luciferase reporter to visualize the distribution of mesenchymal epithelial transitions in vivo

    Long-Term Sphere Culture Cannot Maintain a High Ratio of Cancer Stem Cells: A Mathematical Model and Experiment

    Get PDF
    Acquiring abundant and high-purity cancer stem cells (CSCs) is an important prerequisite for CSC research. At present, researchers usually gain high-purity CSCs through flow cytometry sorting and expand them by short-term sphere culture. However, it is still uncertain whether we can amplify high-purity CSCs through long-term sphere culture. We have proposed a mathematical model using ordinary differential equations to derive the continuous variation of the CSC ratio in long-term sphere culture and estimated the model parameters based on a long-term sphere culture of MCF-7 stem cells. We found that the CSC ratio in long-term sphere culture presented as gradually decreased drift and might be stable at a lower level. Furthermore, we found that fitted model parameters could explain the main growth pattern of CSCs and differentiated cancer cells in long-term sphere culture

    Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness

    Get PDF
    By dividing asymmetrically, stem cells can generate two daughter cells with distinct fates. However, evidence is limited in mammalian systems for the selective apportioning of subcellular contents between daughters. We followed the fates of old and young organelles during the division of human mammary stemlike cells and found that such cells apportion aged mitochondria asymmetrically between daughter cells. Daughter cells that received fewer old mitochondria maintained stem cell traits. Inhibition of mitochondrial fission disrupted both the age-dependent subcellular localization and segregation of mitochondria and caused loss of stem cell properties in the progeny cells. Hence, mechanisms exist for mammalian stemlike cells to asymmetrically sort aged and young mitochondria, and these are important for maintaining stemness properties.Peer reviewe

    Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelial mesenchymal transition (EMT) is a crucial event likely involved in dissemination of epithelial cancer cells. This process enables them to acquire migratory/invasive properties, contributing to tumor and metastatic spread. To know if this event is an early one in breast cancer, we developed a clinical trial. The aim of this protocol was to detect circulating tumor cells endowed with mesenchymal and/or stemness characteristics, at the time of initial diagnosis. Breast cancer patients (n = 61), without visceral or bone metastasis were enrolled and analysis of these dedifferentiated circulating tumor cells (ddCTC) was realized.</p> <p>Methods</p> <p><it>AdnaGen </it>method was used for enrichment cell selection. Then, ddCTC were characterized by RT-PCR study of the following genes: PI3Kα, Akt-2, Twist1 (EMT markers) and ALDH1, Bmi1 and CD44 (stemness indicators).</p> <p>Results</p> <p>Among the studied primary breast cancer cohort, presence of ddCTC was detected in 39% of cases. This positivity is independant from tumor clinicopathological factors apart from the lymph node status.</p> <p>Conclusions</p> <p>Our data uniquely demonstrated that <it>in vivo </it>EMT occurs in the primary tumors and is associated with an enhanced ability of tumor cells to intravasate in the early phase of cancer disease. These results suggest that analysis of circulating tumor cells focused on cells showing mesenchymal or stemness characteristics might facilitate assessment of new drugs in clinical trials.</p

    Similar expression to FGF (Sef) inhibits fibroblast growth factor-induced tumourigenic behaviour in prostate cancer cells and is downregulated in aggressive clinical disease.

    Get PDF
    BACKGROUND: The fibroblast growth factor (FGF) axis is an important mitogenic stimulus in prostate carcinogenesis. We have previously reported that transcript level of human similar expression to FGF (hSef), a key regulator of this pathway, is downregulated in clinical prostate cancer. In this study we further analysed the role of hSef in prostate cancer. METHODS: hSef function was studied in in vitro and in vivo prostate cancer models using stable over-expression clones. Protein expression of hSef was studied in a comprehensive tissue microarray. RESULTS: Stable over-expression of hSef resulted in reduced in vitro cancer cell proliferation, migration and invasive potential. In an in vivo xenograft model, the expression of hSef significantly retarded prostate tumour growth as compared with empty vector (P=0.03) and non-transfected (P=0.0001) controls. Histological examination further showed a less invasive tumour phenotype and reduced numbers of proliferating cells (P=0.0002). In signalling studies, hSef inhibited FGF-induced ERK phosphorylation, migration to the nucleus and activation of a reporter gene. Constitutively active Ras, however, was able to reverse these effects, suggesting that hSef exerts an effect either above or at the level of Ras in prostate cancer cells. In a large tissue microarray, we observed a significant loss of hSef protein in high-grade (P<0.0001) and metastatic (P<0.0001) prostate cancer. CONCLUSIONS: Considered together, the role of hSef in attenuating FGF signalling and evidence of downregulation in advanced tumours argue strongly for a tumour suppressor function in human prostate cancer
    corecore