58 research outputs found

    Leukocite coping capacity as tool to assess capture and handling-induced stress in scandianavian brown bears (Ursus arctos)

    Get PDF
    Brown bears (Ursus arctos) are often captured and handled for research and management purposes. Although the techniques used are potentially stressful for the animals and might have detrimental and long-lasting consequences, it is difficult to assess their physiological impact. Here we report the use of the leukocyte coping capacity (LCC) technique to quantify the acute stress of capture and handling in brown bears in Scandinavia. In April and May 2012 and 2013, we collected venous blood samples and recorded a range of physiological variables to evaluate the effects of capture and the added impact of surgical implantation or removal of transmitters and sensors. We studied 24 brown bears, including 19 that had abdominal surgery. We found 1) LCC values following capture were lower in solitary bears than in bears in family groups suggesting capture caused relatively more stress in solitary bears, 2) ability to cope with handling stress was better (greater LCC values) in bears with good body condition, and 3) LCC values did not appear to be influenced by surgery. Although further evaluation of this technique is required, our preliminary results support the use of the LCC technique as a quantitative measure of stress.Peer reviewe

    Spatial memory in the grey mouse lemur (Microcebus murinus)

    Get PDF
    Wild animals face the challenge of locating feeding sites distributed across broad spatial and temporal scales. Spatial memory allows animals to find a goal, such as a productive feeding patch, even when there are no goal-specific sensory cues available. Because there is little experimental information on learning and memory capabilities in free-ranging primates, the aim of this study was to test whether grey mouse lemurs (Microcebus murinus), as short-term dietary specialists, rely on spatial memory in relocating productive feeding sites. In addition, we asked what kind of spatial representation might underlie their orientation in their natural environment. Using an experimental approach, we set eight radio-collared grey mouse lemurs a memory task by confronting them with two different spatial patterns of baited and non-baited artificial feeding stations under exclusion of sensory cues. Positional data were recorded by focal animal observations within a grid system of small foot trails. A change in the baiting pattern revealed that grey mouse lemurs primarily used spatial cues to relocate baited feeding stations and that they were able to rapidly learn a new spatial arrangement. Spatially concentrated, non-random movements revealed preliminary evidence for a route-based restriction in mouse lemur space; during a subsequent release experiment, however, we found high travel efficiency in directed movements. We therefore propose that mouse lemur spatial memory is based on some kind of mental representation that is more detailed than a route-based network map

    Concurrent Exposure of Bottlenose Dolphins (Tursiops truncatus) to Multiple Algal Toxins in Sarasota Bay, Florida, USA

    Get PDF
    Sentinel species such as bottlenose dolphins (Tursiops truncatus) can be impacted by large-scale mortality events due to exposure to marine algal toxins. In the Sarasota Bay region (Gulf of Mexico, Florida, USA), the bottlenose dolphin population is frequently exposed to harmful algal blooms (HABs) of Karenia brevis and the neurotoxic brevetoxins (PbTx; BTX) produced by this dinoflagellate. Live dolphins sampled during capture-release health assessments performed in this region tested positive for two HAB toxins; brevetoxin and domoic acid (DA). Over a ten-year study period (2000–2009) we have determined that bottlenose dolphins are exposed to brevetoxin and/or DA on a nearly annual basis (i.e., DA: 2004, 2005, 2006, 2008, 2009; brevetoxin: 2000, 2004, 2005, 2008, 2009) with 36% of all animals testing positive for brevetoxin (n = 118) and 53% positive for DA (n = 83) with several individuals (14%) testing positive for both neurotoxins in at least one tissue/fluid. To date there have been no previously published reports of DA in southwestern Florida marine mammals, however the May 2008 health assessment coincided with a Pseudo-nitzschia pseudodelicatissima bloom that was the likely source of DA observed in seawater and live dolphin samples. Concurrently, both DA and brevetoxin were observed in common prey fish. Although no Pseudo-nitzschia bloom was identified the following year, DA was identified in seawater, fish, sediment, snails, and dolphins. DA concentrations in feces were positively correlated with hematologic parameters including an increase in total white blood cell (p = 0.001) and eosinophil (p<0.001) counts. Our findings demonstrate that dolphins within Sarasota Bay are commonly exposed to two algal toxins, and provide the impetus to further explore the potential long-term impacts on bottlenose dolphin health

    Individual, social, and environmental factors affecting salivary and fecal cortisol levels in captive pied tamarins (Saguinus bicolor)

    Get PDF
    This is the peer reviewed version of the following article: Price, E., Coleman, R., Ahsmann, J., Glendewar, G., Hunt, J., Smith, T. & Wormell, D. (2019). Individual, social, and environmental factors affecting salivary and fecal cortisol levels in captive pied tamarins (Saguinus bicolor). American Journal of Primatology, 81(8), which has been published in final form at https://doi.org/10.1002/ajp.23033. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingPied tamarins (Saguinus bicolor) are endangered New World primates, and in captivity appear to be very susceptible to stress. We measured cortisol in 214 saliva samples from 36 tamarins and in 227 fecal samples from 27 tamarins, and investigated the effects of age, sex, pregnancy, rearing history, social status, weight, group composition, and enclosure type using generalized linear mixed models. There was no effect of age on either fecal or salivary cortisol levels. Female pied tamarins in late pregnancy had higher fecal cortisol levels than those in early pregnancy, or nonpregnant females, but there was no effect of pregnancy on salivary cortisol. Females had higher salivary cortisol levels than males, but there was no effect of rearing history. However, for fecal cortisol, there was an interaction between sex and rearing history. Hand‐reared tamarins overall had higher fecal cortisol levels, but while male parent‐reared tamarins had higher levels than females who were parent‐ reared, the reverse was true for hand‐reared individuals. There was a trend towards lower fecal cortisol levels in subordinate individuals, but no effect of status on salivary cortisol. Fecal but not salivary cortisol levels declined with increasing weight. We found little effect of group composition on cortisol levels in either saliva or feces, suggesting that as long as tamarins are housed socially, the nature of the group is of less importance. However, animals in off‐show enclosures had higher salivary and fecal cortisol levels than individuals housed on‐show. We suggest that large on‐show enclosures with permanent access to off‐exhibit areas may compensate for the effects of visitor disturbance, and a larger number of tamarins of the same species housed close together may explain the higher cortisol levels found in tamarins living in off‐show accommodation, but further research is needed

    Non-invasive assessment of adrenocortical activity as a measure of stress in giraffe (Giraffa camelopardalis)

    Get PDF
    Additional file 1: Full dataset in Microsoft Excel workbook format.BACKGROUND : Numbers of giraffes are declining rapidly in their native habitat. As giraffe research and conservation efforts increase, the demand for more complete measures of the impact of conservation interventions and the effects of captive environments on animal health and welfare have risen. We compared the ability of six different enzyme immunoassays to quantify changes in fecal glucocorticoid metabolites (FGM) resulting from three sources: adrenocorticotropic hormone stimulation test, transport, and time of day that samples were collected. RESULTS : Two male giraffes underwent ACTH injections; all six assays detected FGM increases following injection for Giraffe 1, while only three assays detected FGM increases following injection for Giraffe 2. Consistent with other ruminant species, the two 11-oxoetiocholanolone assays (one for 11,17-dioxoandrostanes and the other for 3α,11-oxo metabolites) measured the most pronounced and prolonged elevation of FGM, while an assay for 3β,11β-diol detected peaks of smaller magnitude and duration. Both of the 11-oxoetiocholanolone assays detected significant FGM increases after transport in Giraffes 3–7, and preliminary data suggest FGM detected by the assay for 11,17-dioxoandrostanes may differ across time of day. CONCLUSIONS : We conclude the assay for 11,17-dioxoandrostanes is the most sensitive assay tested for FGM in giraffes and the assay for FGM with a 5β-3α-ol-11-one structure is also effective. 11-oxoetiocholanolone enzyme immunoassays have now been demonstrated to be successful in a wide variety of ruminant species, providing indirect evidence that 5β-reduction may be a common metabolic pathway for glucocorticoids in ruminants. As FGM peaks were detected in at least some giraffes using all assays tested, giraffes appear to excrete a wide variety of different FGM. The assays validated here will provide a valuable tool for research on the health, welfare, and conservation of giraffes.The Association of Friends and Supporters of Goethe University Frankfurt provided financial support for F. Sicks to travel to Vienna to analyze fecal samples and von Opel Hessische Zoostiftung supported a studentship for F. Sicks. One commercial funder [Tierpark Berlin] provided support in the form of salary for F. Sicks during data analysis and preparation of this manuscript. The specific role of this author is articulated in the ‘Author Contributions’ section.http://www.biomedcentral.com/bmcvetresam2016Anatomy and PhysiologyParaclinical Science

    Ten practical realities for institutional animal care and use committees when evaluating protocols dealing with fish in the field

    Get PDF
    Institutional Animal Care and Use Committee’s (IACUCs) serve an important role in ensuring that ethical practices are used by researchers working with vertebrate taxa including fish. With a growing number of researchers working on fish in the field and expanding mandates of IACUCs to regulate field work, there is potential for interactions between aquatic biologists and IACUCs to result in unexpected challenges and misunderstandings. Here we raise a number of issues often encountered by researchers and suggest that they should be taken into consideration by IACUCs when dealing with projects that entail the examination of fish in their natural environment or other field settings. We present these perspectives as ten practical realities along with their implications for establishing IACUC protocols. The ten realities are: (1) fish are diverse; (2) scientific collection permit regulations may conflict with IACUC policies; (3) stakeholder credibility and engagement may constrain what is possible; (4) more (sample size) is sometimes better; (5) anesthesia is not always needed or possible; (6) drugs such as analgesics and antibiotics should be prescribed with care; (7) field work is inherently dynamic; (8) wild fish are wild; (9) individuals are different, and (10) fish capture, handling, and retention are often constrained by logistics. These realities do not imply ignorance on the part of IACUCs, but simply different training and experiences that make it difficult for one to understand what happens outside of the lab where fish are captured and not ordered/purchased/reared, where there are engaged stakeholders, and where there is immense diversity (in size, morphology, behaviour, life-history, physiological tolerances) such that development of rigid protocols or extrapolation from one species (or life-stage, sex, size class, etc.) to another is difficult. We recognize that underlying these issues is a need for greater collaboration between IACUC members (including veterinary professionals) and field researchers which would provide more reasoned, rational and useful guidance to improve or maintain the welfare status of fishes used in field research while enabling researchers to pursue fundamental and applied questions related to the biology of fish in the field. As such, we hope that these considerations will be widely shared with the IACUCs of concerned researchers

    Updating the AIHTS trapping standards to improve animal welfare and capture efficiency and selectivity

    No full text
    In 1999, after pressure from the European Union, an Agreement on International Humane Trapping Standards (AIHTS) that would result in the banning of the steel-jawed leghold traps in the European Community, Canada, and Russia was signed. The United States implemented these standards through an Agreed Minute with the European Community. Over the last two decades, scientists have criticized the AIHTS for (1) omitting species that are commonly trapped; (2) threshold levels of trap acceptance that are not representative of state-of-the-art trap technology; (3) excluding popular traps which are commonly used by trappers although they are known to cause prolonged pain and stress to captured animals; (4) inadequate coverage of capture efficiency and species selectivity (i.e., number of captures of target and non-target species) performance. Concerns about the ability of standards and test procedures to ensure animal welfare, and about the implementation of standards, have also been voiced by wildlife biologists, managers, and conservation groups. In this review, we present a synopsis of current trapping standards and test procedures, and we compare the standards to a then contemporary 1985–1993 Canadian trap research and development program. On the basis of the above-noted concerns about AIHTS, and our experience as wildlife professionals involved in the capture of mammals, we formulated the following hypotheses: (1) the list of mammal species included in the AIHTS is incomplete; (2) the AIHTS have relatively low animal welfare performance thresholds of killing trap acceptance and do not reflect state-of-the-art trapping technology; (3) the AIHTS animal welfare indicators and injuries for restraining traps are insufficient; (4) the AIHTS testing procedures are neither thorough nor transparent; (5) the AIHTS protocols for the use of certified traps are inadequate; (6) the AIHTS procedures for the handling and dispatching of animals are nonexistent; (7) the AIHTS criteria to assess trap capture efficiency and species selectivity are inappropriate. We conclude that the AIHTS do not reflect state-of-the-art trapping technology, and assessment protocols need to be updated to include trap components and sets, animal handling and dispatching, and trap visit intervals. The list of traps and species included in the standards should be updated. Finally, the concepts of capture efficiency and trap selectivity should be developed and included in the standards. Based on our review, it is clear that mammal trapping standards need to be revisited to implement state-of-the-art trapping technology and improve capture efficiency and species selectivity. We believe that a committee of international professionals consisting of wildlife biologists and veterinarians with extensive experience in the capture of mammals and animal welfare could produce new standards within 1–2 years. We propose a series of measures to fund trap testing and implement new standards
    corecore