1,066 research outputs found

    Dimpling process in cold roll metal forming by finite element modelling and experimental validation

    Get PDF
    The dimpling process is a novel cold-roll forming process that involves dimpling of a rolled flat strip prior to the roll forming operation. This is a process undertaken to enhance the material properties and subsequent products’ structural performance while maintaining a minimum strip thickness. In order to understand the complex and interrelated nonlinear changes in contact, geometry and material properties that occur in the process, it is necessary to accurately simulate the process and validate through physical tests. In this paper, 3D non-linear finite element analysis was employed to simulate the dimpling process and mechanical testing of the subsequent dimpled sheets, in which the dimple geometry and material properties data were directly transferred from the dimpling process. Physical measurements, tensile and bending tests on dimpled sheet steel were conducted to evaluate the simulation results. Simulation of the dimpling process identified the amount of non-uniform plastic strain introduced and the manner in which this was distributed through the sheet. The plastic strain resulted in strain hardening which could correlate to the increase in the strength of the dimpled steel when compared to plain steel originating from the same coil material. A parametric study revealed that the amount of plastic strain depends upon on the process parameters such as friction and overlapping gap between the two forming rolls. The results derived from simulations of the tensile and bending tests were in good agreement with the experimental ones. The validation indicates that the finite element analysis was able to successfully simulate the dimpling process and mechanical properties of the subsequent dimpled steel products

    Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Get PDF
    In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated

    Finite Element Analysis of Cold-Formed Dimpled Steel Columns

    Get PDF
    Dimpled steel products are produced from the combination of an innovative dimpling process and a traditional forming process such as cold-roll forming or press-braking. The wider use of cold-formed dimpled steel members has promoted considerable interest in the local instability and strength of these members. Of particular interest is their buckling behaviour and ultimate strength capacity. However, the dimpling process produces cold-formed sections with a complex ‘dimpled’ surface topography and the ‘dimpled’ material is nonuniformly work hardened through the entire thickness. Owing to these complex issues, there are no existing methods to calculate the buckling strength of the dimpled products and validate against physical measurements. This paper presents a Finite Element analysis of the compressive behaviour of cold-formed dimpled steel columns. True stress-strain data obtained from physical tests were incorporated into nonlinear simulations of dimpled steel columns. The simulation results were compared with compression test results on dimpled channel and lipped channel columns and good agreements in both buckling and ultimate strength were obtained. It is demonstrated that the Finite Element analysis can therefore be used to analyse and design cold-formed dimpled steel columns

    Are interventions effective at improving driving in older drivers?: A systematic review

    Get PDF
    Background With the aging of the population, the number of older drivers is on the rise. This poses significant challenges for public health initiatives, as older drivers have a relatively higher risk for collisions. While many studies focus on developing screening tools to identify medically at-risk drivers, little research has been done to develop training programs or interventions to promote, maintain or enhance driving-related abilities among healthy individuals. The purpose of this systematic review is to synopsize the current literature on interventions that are tailored to improve driving in older healthy individuals by working on components of safe driving such as: self-awareness, knowledge, behaviour, skills and/or reducing crash/collision rates in healthy older drivers. Methods Relevant databases such as Scopus and PubMed databases were selected and searched for primary articles published in between January 2007 and December 2017. Articles were identified using MeSH search terms: ("safety" OR "education" OR "training" OR "driving" OR "simulator" OR "program" OR "countermeasures") AND ("older drivers" OR "senior drivers" OR "aged drivers" OR "elderly drivers"). All retrieved abstracts were reviewed, and full texts printed if deemed relevant. Results Twenty-five (25) articles were classified according to: 1) Classroom settings; 2) Computer-based training for cognitive or visual processing; 3) Physical training; 4) In-simulator training; 5) On-road training; and 6) Mixed interventions. Results show that different types of approaches have been successful in improving specific driving skills and/or behaviours. However, there are clear discrepancies on how driving performance/behaviours are evaluated between studies, both in terms of methods or dependent variables, it is therefore difficult to make direct comparisons between these studies. Conclusions This review identified strong study projects, effective at improving older drivers' performance and thus allowed to highlight potential interventions that can b- (undefined

    Acoustic Performance of Different Cold-Formed Studs in Double-Leaf Walls by Finite Element Analysis and Experiment

    Get PDF
    Cold-formed steel studs are often used in lightweight partition walls to provide structural stability but in the same time they change the acoustic performance of the whole system. The overall design of such lightweight structures for acoustic sound insulation becomes very complicated as the sound passing through stud needs to be quantified. One of the greatest challenges is to characterise the stud’s geometric effects on the sound transmission of the partition walls. This paper presents a Finite Element modelling approach and results into the acoustic performance of cold-formed studs in double-leaf walls which are placed in between a source room and a receiving room. The acoustic medium was modelled using fluid elements and the structure was modelled with conventional stress elements. The interaction between the acoustic medium and the structure was modelled in a coupled structural-acoustic analysis. An FE modelling setup which includes appropriate model parameters to be used in the structural-acoustic analysis was presented. The FE sound transmission loss of double-leaf walls using two different stud profiles was then calculated. Experimental tests complying with BS EN Standards 717 and 140 were also carried out to evaluate the FE results. It has shown that the FE results have similar trends and are in fair agreement with the experimental results; and the stud’s shape has significant effects on the sound transmission of the double-leaf walls. The FE analysis is a powerful tool and can be used as a complementary and alternative method to the laboratory tests for acoustic performance of double-leaf walls with steel studs

    The Design and Development of New Cold Roll Formed Products by Finite Element Modeling and Optimisation

    Get PDF
    The design and development of new cold roll formed products can incur significant cost and the product may not be optimised for either performance or manufacture. This paper describes a new method to develop an optimum structural design of profile by cold roll forming using a combined approach of finite element analysis and optimisation techniques. To illustrate the concept, the design and development of a new channel beam and a new drain grating subjected to bending are presented. The two case studies, demonstrate how a roll formed profile may be optimised to improved structural performance through use of stiffeners and/or dimples. Improved performance of cold roll formed products is achieved by increasing the strength of the product without increasing the amount of the material used. The results of this paper clearly demonstrate an efficient and effective method and tool set to optimise design for performance and manufacture of cold roll formed products

    Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    Get PDF
    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometr
    • …
    corecore