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The design and development of new cold roll formed products by finite 
element modelling and optimisation  

 
V.B. Nguyen1, P.K.C. Wood2, M.A. English3 and M.A. Castellucci4 

 
Abstract 
 
The design and development of new cold roll formed products can incur 
significant cost and the product may not be optimised for either performance or 
manufacture. This paper describes a new method to develop an optimum 
structural design of profile by cold roll forming using a combined approach of 
finite element analysis and optimisation techniques. To illustrate the concept, the 
design and development of a new channel beam and a new drain grating 
subjected to bending are presented. The two case studies, demonstrate how a roll 
formed profile may be optimised to improved structural performance through 
use of stiffeners and/or dimples. Improved performance of cold roll formed 
products is achieved by increasing the strength of the product without increasing 
the amount of the material used.  The results of this paper clearly demonstrate an 
efficient and effective method and tool set to optimise design for performance 
and manufacture of cold roll formed products.   
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Introduction 
 
In the cold roll forming industry, there is a critical requirement that is to reduce 
the initial strip to a minimum while maintaining the structural performance of 
the roll formed products, thus minimizing the major financial outlay in the 
process which is the material cost. The development of various alternative cold 
rolled formed profiles which improve the structural performance of the section 
by including additional bends such as ‘intermediate stiffeners’ or ribs or dimples 
(Rhodes and Zaras 1988, Nguyen et al. 2011), as shown in Figure 1, has been a 
solution for these conflicting requirements. These stiffeners subdivide the plate 
elements into smaller sub-elements and hence can considerably increase the 
local buckling strength of cold-formed sections subjected to compressive 
stresses; it is because of smaller width-to-thickness ratio of the sub-elements. 
The zed section with longitudinal stiffeners in the web, introduced during cold 
rolled forming, was designed and developed at the University of Strathclyde by 
Rhodes and Zaras (1988) in conjunction with Hadley Industries plc, with the 
aim of improving a zed type section. The development suggested that when the 
stiffeners were placed about one fifth of the web width from each flange, the 
problem of local buckling in the web was eliminated. The channel section with 
longitudinal stiffeners in the web was developed at Hadley Industries plc later in 
an attempt to incorporate the innovative web stiffener configuration used in the 
new zed, into a channel shape (Castellucci et al. 1997).  
 

 
Figure 1 Intermediate stiffeners in (a) zed, (b) and (c) channel, and (d) grating 
 
In recent years, there has been a significant amount of studies on the strength 
and design of cold-formed sections with web stiffeners (Desmond et al. 1978, 
Papazian et al. 1994, Schafer and Pekoz 1998, Young and Chen 2008, Zhang 
and Young 2012). However, there has been limited investigation on optimum 
design of a section, considering the effects of location and shape of stiffeners on 
the section subjected to bending.  
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Owing to the complex and interrelated nonlinear changes in contact, geometry 
and material properties that occur in the process and product forming, theoretical 
and design calculations cannot be used to accurately analyse the performance of 
the products with additional bends or dimples. These, however, can be solved by 
using a finite element (FE) modelling approach which is capable of simulating 
complicated processes and products (Nguyen et al. 2013, 2014). This allows 
optimisation of the process and subsequent products in order to improve the 
product structural performance or to reduce the product material. 
 
In this paper, finite element simulations and optimisation techniques were 
presented as tools for new process and product developments and illustrated 
through case studies of optimisation of cold roll formed products. The design 
and finite element simulations, using two practical case studies, were carried out 
in three stages: (1) Developing new product geometries from a proposed / 
existing ones by varying their geometric parameters, against the target 
performance of the product, using parametric modelling technique via the finite 
element package PATRAN (MSC Software), (2) Planning the design of 
experiments (DOE) using a response surface model, running multiple 
simulations, recording the performance of the system at each run and 
determining geometric values that give the target performance: a maximum 
strength to weight ratio - these procedures are done using ADAMS/INSIGHT 
and MARC solver (MSC Software), and (3) Simulating the mechanical tests of 
new products and comparing with recently conducted product test results for 
validation. The two case studies of this FE and optimisation techniques included 
the design and development of a new channel and a steel grating. 
 
Development of a new channel 
 
Finite element analysis and optimisation procedures 
The original shape of the channel had no stiffeners and the new channel had two 
stiffeners positioned at an equal distance to the web centre as shown in Figures 
1. The section has a web depth of 170 mm, a flange width of 63 mm and a 
thickness of 1.60 mm. The steel material has a yield stress of 519 N/mm2 and a 
tensile strength of 550 N/mm2. The position of the two stiffeners influences the 
channel’s strength in a 4-point beam bending test. Braces at close gap (200-300 
mm) were used to ensure local buckling occurred in the beams. In the 
simulation, the position of the stiffeners was changed from a minimum value of 
21.71 mm (Figure 1(c)) to a maximum value of 51.71 mm (Figure 1(b)) with 10 
different values in between.  
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Figure 2 illustrates the model setup for FE analysis that includes boundary 
conditions and loading configuration. By taking advantage of symmetry, only a 
half of the test system was modelled. The simulations were carried out on beam 
specimens, simply supported at both ends. The beam mesh was defined as a 
function of the section width and element size (of 4 mm) so that when the 
section shape changed due to changing the position of the web stiffeners, the 
mesh size and number of the beam were retained. When the stiffeners were 
placed at a maximum value of 51.71 mm, the channel beam was modelled using 
83,220 elements and 84,073 nodes; they are four-node, thin-shell elements with 
global displacements and rotations as degrees of freedom (element type 139). 
The braces were modelled as rigid links connections. Load was applied on the 
two central cleats at their centroids using the displacement-controlled method 
while the two end supports were fully fixed in vertical direction at their 
centroids. Each loading point was at a reference node that connects to a set of 
tied nodes (at the beam web where the cleat connected to the beam). The link 
between the reference node and the tied nodes was based on a rigid link 
connection, only unrestrained in loading direction. The displacement was 
increased in successive increments until the beams failed. A full Newton-
Raphson method was used for the iterative procedure and an implicit, static 
analysis was employed. Simulations of the beams in bending test were 
undertaken in two steps. In the first step, a linear elastic buckling analysis was 
performed on the perfect beam to obtain its buckling mode shapes (eigenvalues). 
In the second step, a nonlinear post-buckling analysis was carried out to predict 
the beam post-buckling behaviour and ultimate load capacity. The shape of 
initial geometric imperfections and magnitude as suggested in Nguyen et al. 
(2013) was taken to generate the initial imperfections for FE analysis; it deemed 
to be similar to the mode observed in tests (for example, FE failed modes were 
compared with experimental ones, as shown in Figure 4). 
 
In this analysis, the input parameter was assigned for the position of the web 
stiffeners and the output parameter was the buckling strength of the beam. 
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Figure 2 FE model of a 4-point bending test setup including boundary conditions 
and a closer view of the meshes at two different positions of the web stiffeners 
 
Results and validation 
Buckling loads were obtained as the target performance and it was found that 
buckling load increased linearly with increasing position of the stiffeners from 
the minimum position to the maximum position, through 10 different positions 
of the stiffeners. The optimum case was achieved when the two stiffeners 
positioned at 51.71 mm to the web centre with a maximum buckling load of 
45.20 kN (compared with 44.04 kN when the two stiffeners positioned at 21.71 
mm). Hence, the channel with two stiffeners positioned at 51.71 mm to the web 
centre was developed and named UltraBEAMTM2. 
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To validate the FE simulations, FE and experimental load-displacement curves 
of the 4-point bending test of the UltraBEAMTM2 channels are shown in Figure 
3. The FE and experimental results were close in both buckling and ultimate 
loads, with a maximum difference of less than 5% in buckling load and 6% in 
ultimate load. The failed mode shape of the channel is shown in Figure 4, in 
which the experimental shapes were also illustrated for validation. The 
comparisons show excellent agreements between simulation and test. 
 

 
Figure 3 FE and experimental curves of 4-point beam bending test of 
UltraBEAMTM2 channels 
 

 
Figure 4 Failed mode shapes of the UltraBEAMTM2 in testing and simulation 
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Development of a new grating 
 
Finite element analysis and optimisation procedures 
In this study, the FE simulation of an existing grating was carried out and the 
results compared with experimental results to validate the simulation setup. The 
existing grating had a length of 499.50 mm, a width of 128.30 mm and a 
thickness of 0.935 mm. Load on the grating was applied through the rigid load 
plate, similar to the condition in real test setup, as illustrated in Figure 5. The 
results in Figure 5 show that there is a good agreement between the FE and test 
results with a maximum difference of 6% for ultimate load (load at a 
displacement of 10 mm). 
 
The validated FE model was then extended for modelling and developing a new 
grating product, as shown in the model setup in Figure 6. The performance of 
the grating was examined by changing parameters including: dimple height 
(scale: 1 – 2), dimple width (1 – 4 mm), slot length (2 – 20 mm), slot width (1 – 
4 mm), plate thickness (3 – 5 mm), plate height (scale: 0.65 – 1), as illustrated in 
Figure 7. The output target results were strength in terms of maximum stresses 
and deflections of the grating.  
 
The grating mesh was defined as a function of the section width and element 
size (minimum of 0.20 mm for the dimple elements, and 1.20 mm for elements 
outside the dimple) so that when the section shape changed due to changing the 
model parameters, the mesh size and number of the beam were retained. When 
the parameters assigned their maximum values, the grating was modelled using 
99,976 elements and 113,091 nodes; they are four-node, thin-shell elements with 
global displacements and rotations as degrees of freedom (element type 139). 
The rubber pad was used to largely spread the load from the steel block (placed 
underneath the load cell) to the grating and it was modelled using 28,800 solid 
elements; they are 3-D eight nodes hexahedron elements. The steel block was 
modelled as a rigid load plate moving vertically in the negative vertical direction 
to a predefined displacement; for the purpose of this study, a small displacement 
of 1 mm was used and all the responses were compared at this applied 
displacement. The contact between the grating, rubber and plate was modelled 
as contact surfaces using 3D contact elements. ‘Glued’ contact was used for 
contact between rubber pad and rigid load plate. ‘Touching’ contact between the 
grating and the rigid support plate, the grating and rubber pad and of the grating 
itself were defined. It was assumed that there is frictionless contact between the 
grating and plate. A full Newton-Raphson method was used for the iterative 
procedure and an implicit, static analysis was employed. Large strain nonlinear 
procedure was used to take into account geometric and material nonlinearity. 
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Figure 5 FE and experimental force-displacement curves of the grating. FE 
model setup of the existing grating similar to test setup (in box) 
 

 
 
Figure 6 FE model setup of the new grating including load path and boundary 
conditions 
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Figure 7 FE mesh of the new grating which shows the studied parameters 
 
The process of varying all the parameters was carried out in the program 
ADAMS/INSIGHT. In which each parameter was assigned three different 
values in the range from min to max value. The target responses selected in this 
study were maximum tress and minimum deflection in the grating. Each 
response was a response surface function of all parameters, and was treated as 
an objective. There were a total 729 runs integrating all parameters while the 
applied loads on the gratings were the same for all the runs.  
 
Results and discussions 
It was found that dimple geometries are the most effective parameters to both 
stress and deflection, as shown in Figure 8. In this figure, ‘Positive’ Effect % 
means response increases with larger parameter value, and ‘Negative’ Effect % 
means response decreases with larger parameter value. In this study, ‘Positive’ 
Effect for the maximum stress response means the stress increases while 
‘Negative’ Effect for the deflection means the deflection decreases, and vice 
versa. It can be seen that increasing ‘dimple height’ is the most effective way to 
increase the grating strength and reduce its deflection, with up to 44% effect; 
increasing ‘plate thickness’ is also one of the most effective solution. However, 
increasing ‘plate height’ parameter value is not effective for both responses; 
therefore, the plate height can be reduced to save the grating weight or material.  
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Figure 8 Effects of parameter values to the grating responses: the maximum 
stress (above) and the deflection (below) 
 
These observations can be also seen in Figure 9 which shows the model of 
central part of one grating (out of 729 runs) in which maximum stresses 
developed around the dimples whilst less stresses generated in the plate. 
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Figure 9 Stresses distribution in the central part of the grating at a predefined 
displacement 
 
Based on these results, the aim of designing the grating is to find a balance for 
the dimple height and plate thickness that can give the maximum strength and 
minimum deflection in the grating. With specified target responses (stress and 
deflection that satisfied the standard test requirements), a set of parameter values 
were determined, and an optimum design of the grating was achieved. 
 
Conclusions 
 
This paper has presented the design and development of new cold roll formed 
products by using a combined approach of the finite element analysis and 
optimisation techniques to simulate the products’ structural responses and obtain 
the optimum design for the products. Two case studies which included a new 
channel beam and a new drain grating subjected to bending were presented to 
illustrate the design concepts. For the channel UltraBEAMTM2, the development 
suggested that when the longitudinal stiffeners were placed on the web as much 
close as possible from each flange, the buckling and ultimate strengths of the 
beam could be maximised comparing with other positions. For the new grating 
development, it showed that when a set of ‘most effective’ parameter values 
were determined, i.e. the dimple height and the plate thickness, and an optimum 
design of the grating could be achieved. This study demonstrates that the finite 
element modelling together with optimisation techniques provide powerful 
practical tools to analyse and obtain optimum design for complex products. The 
successful simulations could enable the cold roll forming industry to provide 
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novel cold roll formed products or alternative products with stiffeners which are 
developed from optimum design concepts. 
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