111 research outputs found

    Characterization of the material response in the granular ratcheting

    Get PDF
    The existence of a very special ratcheting regime has recently been reported in a granular packing subjected to cyclic loading \cite{alonso04}. In this state, the system accumulates a small permanent deformation after each cycle. After a short transient regime, the value of this permanent strain accumulation becomes independent on the number of cycles. We show that a characterization of the material response in this peculiar state is possible in terms of three simple macroscopic variables. They are defined that, they can be easily measured both in the experiments and in the simulations. We have carried out a thorough investigation of the micro- and macro-mechanical factors affecting these variables, by means of Molecular Dynamics simulations of a polydisperse disk packing, as a simple model system for granular material. Biaxial test boundary conditions with a periodically cycling load were implemented. The effect on the plastic response of the confining pressure, the deviatoric stress and the number of cycles has been investigated. The stiffness of the contacts and friction has been shown to play an important role in the overall response of the system. Specially elucidating is the influence of the particular hysteretical behavior in the stress-strain space on the accumulation of permanent strain and the energy dissipation.Comment: 13 pages, 20 figures. Submitted to PR

    The anisotropy of granular materials

    Get PDF
    The effect of the anisotropy on the elastoplastic response of two dimensional packed samples of polygons is investigated here, using molecular dynamics simulation. We show a correlation between fabric coefficients, characterizing the anisotropy of the granular skeleton, and the anisotropy of the elastic response. We also study the anisotropy induced by shearing on the subnetwork of the sliding contacts. This anisotropy provides an explanation to some features of the plastic deformation of granular media.Comment: Submitted to PR

    Steel-based applications in earthquake-prone areas

    Get PDF
    Steel-Earth project aims at distributing among technicians, engineers, design companies and standardization bodies the results of three past RFCS projects (Steel-Retro [3], Opus [2] and PrecaSteel [1]), providing useful tools for the design and for the retrofit of existing buildings. Technical documents and practical applications to case studies, regarding design of steel and composite steel/concrete buildings and innovative steel-based techniques for the retrofit of existing r.c. and masonry constructions, have been elaborated and collected into a volume distributed during the final workshop of the dissemination project. Pre-normative and background documents concerning the design of steel and composite structures and the rehabilitation of existing constructions have been prepared. A lot of attention has been paid to the analysis of the influence of overstrength factors on the seismic design of steel and composite structures. The prepared documents have been distributed to the attending people and to the members of WG 2 (CEN/TC 250/SC 8/WG 2 “Steel and Composite Structures”) during the final workshop of the project. Technical sheets, working examples and background documents have been translated into several languages (German, French, Italian, Romanian and Greek) and are free available on the website of the project (https://www.steelconstruct.com/site/), where information regarding Steel-Earth are also presented.11 Workshops in Italy, Greece, Germany, Belgium, Portugal, Spain and Romania and 5 conferences in Emilia-Romagna have been organized, as well as 2 practical courses for engineers and academic people in Pavia (Italy). Flash-drives with the technical documents and applications elaborated in Steel-Earth have been distributed to the attending people
    • 

    corecore