49,283 research outputs found

    What measurable zero point fluctuations can(not) tell us about dark energy

    Get PDF
    We show that laboratory experiments cannot measure the absolute value of dark energy. All known experiments rely on electromagnetic interactions. They are thus insensitive to particles and fields that interact only weakly with ordinary matter. In addition, Josephson junction experiments only measure differences in vacuum energy similar to Casimir force measurements. Gravity, however, couples to the absolute value. Finally we note that Casimir force measurements have tested zero point fluctuations up to energies of ~10 eV, well above the dark energy scale of ~0.01 eV. Hence, the proposed cut-off in the fluctuation spectrum is ruled out experimentally.Comment: 4 page

    Designers manual for circuit design by analog/digital techniques Final report

    Get PDF
    Manual for designing circuits by hybrid compute

    Unusual magnetic fields in the interacting spiral NGC 3627

    Get PDF
    By observing the interacting galaxy NGC 3627 in radio polarization we try to answer the question to which degree the magnetic field follows the galactic gas flows. We obtained total power and polarized intensity maps at 8.46 GHz and 4.85 GHz using the VLA in its compact D-configuration. In order to overcome the zero-spacing problems, the interferometric data were combined with single-dish measurements obtained with the Effelsberg 100-m radio telescope. The observed magnetic field structure in NGC 3627 suggests that two field components are superposed. One component smoothly fills the interarm space and shows up also in the outermost disk regions, the other component follows a symmetric S-shaped structure. In the western disk the latter component is well aligned with an optical dust lane, following a bend which is possibly caused by external interactions. However, in the SE disk the magnetic field crosses a heavy dust lane segment, apparently being insensitive to strong density-wave effects. We suggest that the magnetic field is decoupled from the gas by high turbulent diffusion, in agreement with the large \ion{H}{i} line width in this region. We discuss in detail the possible influence of compression effects and non-axisymmetric gas flows on the general magnetic field asymmetries in NGC 3627. On the basis of the Faraday rotation distribution we also suggest the existence of a large ionized halo around this galaxy.Comment: 11 pages, 11 figure

    The population of deformed bands in 48^{48}Cr by emission of 8^{8}Be from the 32^{32}S + 24^{24}Mg reaction

    Full text link
    Using particle-Îł\gamma coincidences we have studied the population of final states after the emission of 2 α\alpha-particles and of 8^{8}Be in nuclei formed in 32^{32}S+24^{24}Mg reactions at an energy of EL(32S)=130MeV\textrm{E}_{\rm L}(^{32}\textrm{S}) = 130 {\rm MeV}. The data were obtained in a setup consisting of the GASP Îł\gamma-ray detection array and the multidetector array ISIS. Particle identification is obtained from the Δ\DeltaE and E signals of the ISIS silicon detector telescopes, the 8^{8}Be being identified by the instantaneous pile up of the Δ\DeltaE and E pulses. Îł\gamma-ray decays of the 48^{48}Cr nucleus are identified with coincidences set on 2 α\alpha-particles and on 8^{8}Be. Some transitions of the side-band with Kπ=4−K^\pi=4^{-} show stronger population for 8^{8}Be emission relative to that of 2 α\alpha-particles (by a factor 1.5−1.81.5-1.8). This observation is interpreted as due to an enhanced emission of 8^{8}Be into a more deformed nucleus. Calculations based on the extended Hauser-Feshbach compound decay formalism confirm this observation quantitatively.Comment: 17 pages, 9 figures accepted for publication in J. Phys.

    Near-infrared spectropolarimetry of a delta-spot

    Full text link
    Sunspots harboring umbrae of both magnetic polarities within a common penumbra (delta-spots) are often but not always related to flares. We present first near-infrared (NIR) observations (Fe I 1078.3 nm and Si I 1078.6 nm spectra) obtained with the Tenerife Infrared Polarimeter (TIP) at the Vacuum Tower Telescope (VTT) in Tenerife on 2012 June 17, which afford accurate and sensitive diagnostics to scrutinize the complex fields along the magnetic neutral line of a delta-spot within active region NOAA 11504. We examine the vector magnetic field, line-of-sight (LOS) velocities, and horizontal proper motions of this rather inactive delta-spot. We find a smooth transition of the magnetic vector field from the main umbra to that of opposite polarity (delta-umbra), but a discontinuity of the horizontal magnetic field at some distance from the delta-umbra on the polarity inversion line. The magnetic field decreases faster with height by a factor of two above the delta-umbra. The latter is surrounded by its own Evershed flow. The Evershed flow coming from the main umbra ends at a line dividing the spot into two parts. This line is marked by the occurrence of central emission in the Ca II 854.2 nm line. Along this line, high chromospheric LOS-velocities of both signs appear. We detect a shear flow within the horizontal flux transport velocities parallel to the dividing line.Comment: 4 pages, will appear as Letter in Astronomy & Astrophysic

    Lagrangian acceleration statistics in turbulent flows

    Full text link
    We show that the probability densities af accelerations of Lagrangian test particles in turbulent flows as measured by Bodenschatz et al. [Nature 409, 1017 (2001)] are in excellent agreement with the predictions of a stochastic model introduced in [C. Beck, PRL 87, 180601 (2001)] if the fluctuating friction parameter is assumed to be log-normally distributed. In a generalized statistical mechanics setting, this corresponds to a superstatistics of log-normal type. We analytically evaluate all hyperflatnes factors for this model and obtain a flatness prediction in good agreement with the experimental data. There is also good agreement with DNS data of Gotoh et al. We relate the model to a generalized Sawford model with fluctuating parameters, and discuss a possible universality of the small-scale statistics.Comment: 10 pages, 2 figure

    The Infrared Nucleus of the Wolf-Rayet Galaxy Henize 2-10

    Get PDF
    We have obtained near-infrared images and mid-infrared spectra of the starburst core of the dwarf Wolf-Rayet galaxy He 2-10. We find that the infrared continuum and emission lines are concentrated in a flattened ellipse 3-4'' or 150 pc across which may show where a recent accretion event has triggered intense star formation. The ionizing radiation from this cluster has an effective temperature of 40,000 K, corresponding to 30M⊙30M_\odot stars, and the starburst is 0.5−1.5×1070.5-1.5 \times 10^7 years old.Comment: 17 pages Latex, 7 postscript figures, 1 postscript table, accepted to A

    Spin lifetimes and strain-controlled spin precession of drifting electrons in zinc blende type semiconductors

    Full text link
    We study the transport of spin polarized electrons in n-GaAs using spatially resolved continuous wave Faraday rotation. From the measured steady state distribution, we determine spin relaxation times under drift conditions and, in the presence of strain, the induced spin splitting from the observed spin precession. Controlled variation of strain along [110] allows us to deduce the deformation potential causing this effect, while strain along [100] has no effect. The electric field dependence of the spin lifetime is explained quantitatively in terms of an increase of the electron temperature.Comment: 5 pages, 6 figure

    Dense Molecular Filaments Feeding a Starburst: ALMA Maps of CO(3-2) in Henize 2-10

    Full text link
    We present ALMA CO(3-2) observations at 0.3 arcsec resolution of He2-10, a starburst dwarf galaxy and possible high-z galaxy analogue. The warm dense gas traced by CO(3--2) is found in clumpy filaments that are kinematically and spatially distinct. The filaments have no preferred orientation or direction; this may indicate that the galaxy is not evolving into a disk galaxy. Filaments appear to be feeding the active starburst; the velocity field in one filament suggests acceleration onto an embedded star cluster. The relative strengths of CO(3-2) and radio continuum vary strongly on decaparsec scales in the starburst. There is no CO(3--2) clump coincident with the non-thermal radio source that has been suggested to be an AGN, nor unusual kinematics. The kinematics of the molecular gas show significant activity apparently unrelated to the current starburst. The longest filament, east of the starburst, has a pronounced shear of FWHM ∌40\sim40~\kms\ across its ∌\sim50~pc width over its entire ≈0.5\approx 0.5 kpc length. The cause of the shear is not clear. This filament is close in projection to a `dynamically distinct' CO feature previously seen in CO(1--0). The most complex region and the most highly disturbed gas velocities are in a region 200~pc south of the starburst. The CO(3--2) emission there reveals a molecular outflow, of linewidth FWZI ∌\sim 120-140 \kms, requiring an energy ≳1053 erg/s\gtrsim 10^{53} \rm~ erg/s. There is at present {\it no} candidate for the driving source of this outflow.Comment: This was revised 31 October to correct some typos and to replace Figure

    Synthetic X-ray and radio maps for two different models of Stephan's Quintet

    Full text link
    We present simulations of the compact galaxy group Stephan's Quintet (SQ) including magnetic fields, performed with the N-body/smoothed particle hydrodynamics (SPH) code \textsc{Gadget}. The simulations include radiative cooling, star formation and supernova feedback. Magnetohydrodynamics (MHD) is implemented using the standard smoothed particle magnetohydrodynamics (SPMHD) method. We adapt two different initial models for SQ based on Renaud et al. and Hwang et al., both including four galaxies (NGC 7319, NGC 7320c, NGC 7318a and NGC 7318b). Additionally, the galaxies are embedded in a magnetized, low density intergalactic medium (IGM). The ambient IGM has an initial magnetic field of 10−910^{-9} G and the four progenitor discs have initial magnetic fields of 10−9−10−710^{-9} - 10^{-7} G. We investigate the morphology, regions of star formation, temperature, X-ray emission, magnetic field structure and radio emission within the two different SQ models. In general, the enhancement and propagation of the studied gaseous properties (temperature, X-ray emission, magnetic field strength and synchrotron intensity) is more efficient for the SQ model based on Renaud et al., whose galaxies are more massive, whereas the less massive SQ model based on Hwang et al. shows generally similar effects but with smaller efficiency. We show that the large shock found in observations of SQ is most likely the result of a collision of the galaxy NGC 7318b with the IGM. This large group-wide shock is clearly visible in the X-ray emission and synchrotron intensity within the simulations of both SQ models. The order of magnitude of the observed synchrotron emission within the shock front is slightly better reproduced by the SQ model based on Renaud et al., whereas the distribution and structure of the synchrotron emission is better reproduced by the SQ model based on Hwang et al..Comment: 20 pages, 15 figures, accepted to MNRA
    • 

    corecore