1,254 research outputs found

    Fourier spectra from exoplanets with polar caps and ocean glint

    Full text link
    The weak orbital-phase dependent reflection signal of an exoplanet contains information on the planet surface, such as the distribution of continents and oceans on terrestrial planets. This light curve is usually studied in the time domain, but because the signal from a stationary surface is (quasi)periodic, analysis of the Fourier series may provide an alternative, complementary approach. We study Fourier spectra from reflected light curves for geometrically simple configurations. Depending on its atmospheric properties, a rotating planet in the habitable zone could have circular polar ice caps. Tidally locked planets, on the other hand, may have symmetric circular oceans facing the star. These cases are interesting because the high-albedo contrast at the sharp edges of the ice-sheets and the glint from the host star in the ocean may produce recognizable light curves with orbital periodicity, which could also be interpreted in the Fourier domain. We derive a simple general expression for the Fourier coefficients of a quasiperiodic light curve in terms of the albedo map of a Lambertian planet surface. Analytic expressions for light curves and their spectra are calculated for idealized situations, and dependence of spectral peaks on the key parameters inclination, obliquity, and cap size is studied.Comment: 15 pages, 2 tables, 13 figure

    Basic Hypergeometric Functions as Limits of Elliptic Hypergeometric Functions

    Get PDF
    We describe a uniform way of obtaining basic hypergeometric functions as limits of the elliptic beta integral. This description gives rise to the construction of a polytope with a different basic hypergeometric function attached to each face of this polytope. We can subsequently obtain various relations, such as transformations and three-term relations, of these functions by considering geometrical properties of this polytope. The most general functions we describe in this way are sums of two very-well-poised _10φ_9's and their Nassrallah-Rahman type integral representation

    Limits of elliptic hypergeometric biorthogonal functions

    Get PDF
    The purpose of this article is to bring structure to (basic) hypergeometric biorthogonal systems, in particular to the q-Askey scheme of basic hypergeometric orthogonal polynomials. We aim to achieve this by looking at the limits as p->0 of the elliptic hypergeometric biorthogonal functions from Spiridonov, with parameters which depend in varying ways on p. As a result we get 38 systems of biorthogonal functions with for each system at least one explicit measure for the bilinear form. Amongst these we indeed recover the q-Askey scheme. Each system consists of (basic hypergeometric) rational functions or polynomials.Comment: 27 pages. This is a self-contained article which can also be seen as part 1 of a 3 part series on limits of (multivariate) elliptic hypergeometric biorthogonal functions and their measure

    Limits of multivariate elliptic beta integrals and related bilinear forms

    Get PDF
    In this article we consider the elliptic Selberg integral, which is a BC_n symmetric multivariate extension of the elliptic beta integral. We categorize the limits that are obtained as p → 0, for given behavior of the parameters as p → 0. This article is therefore the multivariate version of our earlier paper "Basic Hypergeometric Functions as Limits of Elliptic Hypergeometric Functions". The integrand of the elliptic Selberg integral is the measure for the BC_n symmetric biorthogonal functions introduced by the second author, so we also consider the limits of the associated bilinear form. We also provide the limits for the discrete version of this bilinear form, which is related to a multivariate extension of the Frenkel-Turaev summation

    Multiple genome viewer (MGV): a new tool for visualization and comparison of multiple annotated genomes.

    Get PDF
    The assembled and annotated genomes for 16 inbred mouse strains (Lilue et al., Nat Genet 50:1574-1583, 2018) and two wild-derived strains (CAROLI/EiJ and PAHARI/EiJ) (Thybert et al., Genome Res 28:448-459, 2018) are valuable resources for mouse genetics and comparative genomics. We developed the multiple genome viewer (MGV; http://www.informatics.jax.org/mgv ) to support visualization, exploration, and comparison of genome annotations within and across these genomes. MGV displays chromosomal regions of user-selected genomes as horizontal tracks. Equivalent features across the genome tracks are highlighted using vertical \u27swim lane\u27 connectors. Navigation across the genomes is synchronized as a researcher uses the scroll and zoom functions. Researchers can generate custom sets of genes and other genome features to be displayed in MGV by entering genome coordinates, function, phenotype, disease, and/or pathway terms. MGV was developed to be genome agnostic and can be used to display homologous features across genomes of different organisms

    Cancer Biology Data Curation at the Mouse Tumor Biology Database (MTB)

    Get PDF
    Many advances in the field of cancer biology have been made using mouse models of human cancer. The Mouse Tumor Biology (MTB, "http://tumor.informatics.jax.org":http://tumor.informatics.jax.org) database provides web-based access to data on spontaneous and induced tumors from genetically defined mice (inbred, hybrid, mutant, and genetically engineered strains of mice). These data include standardized tumor names and classifications, pathology reports and images, mouse genetics, genomic and cytogenetic changes occurring in the tumor, strain names, tumor frequency and latency, and literature citations.

Although primary source for the data represented in MTB is peer-reviewed scientific literature an increasing amount of data is derived from disparate sources. MTB includes annotated histopathology images and cytogenetic assay images for mouse tumors where these data are available from The Jackson Laboratory’s mouse colonies and from outside contributors. MTB encourages direct submission of mouse tumor data and images from the cancer research community and provides investigators with a web-accessible tool for image submission and annotation. 

Integrated searches of the data in MTB are facilitated by the use of several controlled vocabularies and by adherence to standard nomenclature. MTB also provides links to other related online resources such as the Mouse Genome Database, Mouse Phenome Database, the Biology of the Mammary Gland Web Site, Festing's Listing of Inbred Strains of Mice, the JAX® Mice Web Site, and the Mouse Models of Human Cancers Consortium's Mouse Repository. 

MTB provides access to data on mouse models of cancer via the internet and has been designed to facilitate the selection of experimental models for cancer research, the evaluation of mouse genetic models of human cancer, the review of patterns of mutations in specific cancers, and the identification of genes that are commonly mutated across a spectrum of cancers.

MTB is supported by NCI grant CA089713

    A strongly changing accretion morphology during the outburst decay of the neutron star X-ray binary 4U 1608−52

    Get PDF
    It is commonly assumed that the properties and geometry of the accretion flow in transient low-mass X-ray binaries (LMXBs) significantly change when the X-ray luminosity decays below ∼10⁻² of the Eddington limit (L_(Edd)). However, there are few observational cases where the evolution of the accretion flow is tracked in a single X-ray binary over a wide dynamic range. In this work, we use NuSTAR and NICER observations obtained during the 2018 accretion outburst of the neutron star LMXB 4U 1608−52, to study changes in the reflection spectrum. We find that the broad Fe–Kα line and Compton hump, clearly seen during the peak of the outburst when the X-ray luminosity is ∼10³⁷ erg s⁻¹ (∼0.05 L_(Edd)), disappear during the decay of the outburst when the source luminosity drops to ∼4.5 × 10³⁵ erg s⁻¹ (∼0.002 L_(Edd)). We show that this non-detection of the reflection features cannot be explained by the lower signal-to-noise ratio at lower flux, but is instead caused by physical changes in the accretion flow. Simulating synthetic NuSTAR observations on a grid of inner disc radius, disc ionization, and reflection fraction, we find that the disappearance of the reflection features can be explained by either increased disc ionization (log ξ ≳ 4.1) or a much decreased reflection fraction. A changing disc truncation alone, however, cannot account for the lack of reprocessed Fe–Kα emission. The required increase in ionization parameter could occur if the inner accretion flow evaporates from a thin disc into a geometrically thicker flow, such as the commonly assumed formation of a radiatively inefficient accretion flow at lower mass accretion rates

    Properties of generalized univariate hypergeometric functions

    Get PDF
    Based on Spiridonov's analysis of elliptic generalizations of the Gauss hypergeometric function, we develop a common framework for 7-parameter families of generalized elliptic, hyperbolic and trigonometric univariate hypergeometric functions. In each case we derive the symmetries of the generalized hypergeometric function under the Weyl group of type E_7 (elliptic, hyperbolic) and of type E_6 (trigonometric) using the appropriate versions of the Nassrallah-Rahman beta integral, and we derive contiguous relations using fundamental addition formulas for theta and sine functions. The top level degenerations of the hyperbolic and trigonometric hypergeometric functions are identified with Ruijsenaars' relativistic hypergeometric function and the Askey-Wilson function, respectively. We show that the degeneration process yields various new and known identities for hyperbolic and trigonometric special functions. We also describe an intimate connection between the hyperbolic and trigonometric theory, which yields an expression of the hyperbolic hypergeometric function as an explicit bilinear sum in trigonometric hypergeometric functions.Comment: 46 page

    The importance of parental knowledge in the association between ADHD symptomatology and related domains of impairment

    Get PDF
    Parents of children with ADHD experience several difficulties while raising their children and report lower levels of knowledge about their children’s life and behaviors. A recent study found that low levels of parental knowledge mediated the association between ADHD symptoms and risk-taking behavior (RTB) in adolescents. The current study aimed to investigate this previous finding further by replicating it, by taking peer influence into account as additional social factor of importance and by extending it and also investigate the role of parental knowledge in the association between ADHD symptoms and homework problems. Three studies were performed: study 1 (N=234) replicated previous work on parental knowledge mediating the association between ADHD symptoms and RTB, study 2 (pre-registered, N=313) added peer influence, and study 3 (pre-registered, N=315) assessed whether parental knowledge mediated the association between ADHD symptoms and homework behavior. Parental knowledge consistently mediated the association between ADHD symptoms on one hand and RTB and homework problems on the other, and also predicted stronger resistance to peer influence. Because parental knowledge was repeatedly linked to ADHD-related problems, it seems promising to include parental knowledge in treatment of ADHD-related problems in adolescents, by improving the parent-child relationship. Future studies should test more directly how improvement of the parent-child relationship can be used to optimize parental knowledge, which in its turn reduces ADHD-related problems
    corecore