44 research outputs found

    Affine Wa(A4), Quaternions, and Decagonal Quasicrystals

    Full text link
    We introduce a technique of projection onto the Coxeter plane of an arbitrary higher dimensional lattice described by the affine Coxeter group. The Coxeter plane is determined by the simple roots of the Coxeter graph I2 (h) where h is the Coxeter number of the Coxeter group W(G) which embeds the dihedral group Dh of order 2h as a maximal subgroup. As a simple application we demonstrate projections of the root and weight lattices of A4 onto the Coxeter plane using the strip (canonical) projection method. We show that the crystal spaces of the affine Wa(A4) can be decomposed into two orthogonal spaces whose point groups is the dihedral group D5 which acts in both spaces faithfully. The strip projections of the root and weight lattices can be taken as models for the decagonal quasicrystals. The paper also revises the quaternionic descriptions of the root and weight lattices, described by the affine Coxeter group Wa(A3), which correspond to the face centered cubic (fcc) lattice and body centered cubic (bcc) lattice respectively. Extensions of these lattices to higher dimensions lead to the root and weight lattices of the group Wa(An), n>=4 . We also note that the projection of the Voronoi cell of the root lattice of Wa(A4) describes a framework of nested decagram growing with the power of the golden ratio recently discovered in the Islamic arts.Comment: 26 pages, 17 figure

    Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Full text link
    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.Comment: 21 pages, 6 figures and 6 tables, submitted to Prog. Theor. Phy

    A European Journal of Health Communication in the Age of Open Science

    Get PDF
    corecore