358 research outputs found
The diversity of population responses to environmental change
The current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct
Superconducting diamagnetic fluctuations in ropes of carbon nanotubes
We report low-temperature magnetisation measurements on a large number of
purified ropes of single wall carbon nanotubes. In spite of a large
superparamagnetic contribution due to the small ferromagnetic catalytical
particles still present in the sample, at low temperature () and low
magnetic field (), a diamagnetic signal is detectable. This low
temperature diamagnetism can be interpreted as the Meissner effect in ropes of
carbon nanotubes which have previously been shown to exhibit superconductivity
from transport measurements.Comment: 10 pages 3 figure
Recommended from our members
Neutralization of Plutonium and Enriched Uranium Solutions Containing Gadolinium as a Neutron Poison
Materials currently being dissolved in the HB-Line Facility will result in an accumulated solution containing an estimated uranium:plutonium (U:Pu) ratio of 4.3:1 and an 235U enrichment estimated at 30 per cent The U:Pu ratio and the enrichment are outside the evaluated concentration range for disposition to high level waste (HLW) using gadolinium (Gd) as a neutron poison. To confirm that the solution generated during the current HB-Line dissolving campaign can be poisoned with Gd, neutralized and discarded to the Savannah River Site (SRS) high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of surrogate solutions was examined. Experiments were performed with a U/Pu/Gd solution representative of the HB-Line estimated concentration ratio and also a U/Gd solution. Depleted U was used in the experiments as the enrichment of the U will not affect the chemical behavior during neutralization, but will affect the amount of Gd added to the solution. Settling behavior of the neutralized solutions was found to be comparable to previous studies. The neutralized solutions mixed easily and had expected densities of typical neutralized waste. The neutralized solids were found to be homogeneous and less than 20 microns in size. Partially neutralized solids were more amorphous than the fully neutralized solids. Based on the results of these experiments, Gd was found to be a viable poison for neutralizing a U/Pu/Gd solution with a U:Pu mass ratio of 4.3:1 thus extending the U:Pu mass ratio from the previously investigated 0-3:1 to 4.3:1. However, further work is needed to allow higher U concentrations or U:Pu ratios greater than investigated in this work
Method for Manufacturing a Carbon Nanotube Field Emission Device with Overhanging Gate
A carbon nanotube field emission device with overhanging gate fabricated by a double silicon-on-insulator process. Other embodiments are described and claimed
Aging and Its Demographic Measurement
This case study highlights the general issues raised earlier. First, that maximum lifespan is not an easily obtainable metric. Specifically, it is unambiguous in the sense that once the last animal dies, it is most definitely dead. But to estimate the variance in maximum lifespan, many replicate populations would need to be followed for each treatment group (with each replicate providing a single observation of maximum lifespan). Second, median lifespan, although measurable from a single population, provides no information on the age-specificity and patterns in age-specific vital rates that are contributing to differences in "aging" (i.e., differences in physiological frailty and rates of increasing mortality across the adult lifespan). Finally, our partitioning of aging into two components — IMR and RoA — allows us to unravel causation in a demographic sense. Specifically, it allows us to specify an aging rate that is separate from its starting value (IMR), independent of fluctuations in survival due to temporary experimental impacts, and not necessarily equivalent to expectations due to median or maximum lifespan
Gene Expression of Components of the Insulin/Insulin-Like Signaling Pathway in Response to Heat Stress in the Garter Snake, \u3ci\u3eThamnophis Elegans\u3c/i\u3e
The insulin/insulin-like signaling (IIS) pathway is an evolutionary conserved molecular signaling pathway that regulates growth, reproduction, stress resistance, and longevity in response to nutrition and external stress. While the constituents of this pathway and their functions are relatively well understood in laboratory model animals, they have not been explored in many other organisms, with notable exceptions in the fisheries literature. We tested for the gene expression of four key components of this pathway in the garter snake (Thamnophis elegans) liver, and determine how the transcription of these components responds to heat stress. We found that the two insulin-like growth factor ligands (IGF-1 and IGF-2) and the receptors (IGF-1 Receptor and M6P/ IGF-2 Receptor, or IGF-1R and IGF-2R) are expressed in garter snake liver tissue. Under normal laboratory conditions, IGF-2 and IGF-2R are expressed at a higher level than IGF-1 and IGF-1R. In response to heat stress, IGF-1 expression remained the same, IGF-2 expression decreased, and the expression of both receptors increased. These results demonstrate that elements of the IIS pathway are responsive to heat stress in snakes. Further studies are needed to fully understand the biological consequences of this response
Lack of consensus on an aging biology paradigm? A global survey reveals an agreement to disagree, and the need for an interdisciplinary framework
At a recent symposium on aging biology, a debate was held as to whether or not we know what biological aging is. Most of the participants were struck not only by the lack of consensus on this core question, but also on many basic tenets of the field. Accordingly, we undertook a systematic survey of our 71 participants on key questions that were raised during the debate and symposium, eliciting 37 responses. The results confirmed the impression from the symposium: there is marked disagreement on the most fundamental questions in the field, and little consensus on anything other than the heterogeneous nature of aging processes. Areas of major disagreement included what participants viewed as the essence of aging, when it begins, whether aging is programmed or not, whether we currently have a good understanding of aging mechanisms, whether aging is or will be quantifiable, whether aging will be treatable, and whether many non-aging species exist. These disagreements lay bare the urgent need for a more unified and cross-disciplinary paradigm in the biology of aging that will clarify both areas of agreement and disagreement, allowing research to proceed more efficiently. We suggest directions to encourage the emergence of such a paradigm
- …