4 research outputs found

    Rocking the BOAT: the ups and downs of the long-term radio light curve for GRB 221009A

    No full text
    We present radio observations of the long-duration gamma-ray burst (GRB) 221009A that has become known to the community as the Brightest Of All Time or the BOAT. Our observations span the first 475 d post-burst and three orders of magnitude in observing frequency, from 0.15 to 230 GHz. By combining our new observations with those available in the literature, we have the most detailed radio data set in terms of cadence and spectral coverage of any GRB to date, which we use to explore the spectral and temporal evolution of the afterglow. By testing a series of phenomenological models, we find that three separate synchrotron components best explain the afterglow. The high temporal and spectral resolution allows us to conclude that standard analytical afterglow models are unable to explain the observed evolution of GRB 221009A. We explore where the discrepancies between the observations and the models are most significant and place our findings in the context of the most well-studied GRB radio afterglows to date. Our observations are best explained by three synchrotron-emitting regions that we interpret as a forward shock, a reverse shock, and an additional shock potentially from a cocoon or wider outflow. Finally, we find that our observations do not show any evidence of any late-time spectral or temporal changes that could result from a jet break but note that any lateral structure could significantly affect a jet break signature.</p

    The first JWST spectrum of a GRB afterglow: No bright supernova in observations of the brightest GRB of all time, GRB 221009A

    No full text
    International audienceWe present JWST and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. Observations obtained with NIRSPEC (0.6-5.5 micron) and MIRI (5-12 micron) 12 days after the burst are the first mid-IR spectroscopy performed for a GRB. Assuming the underlying slope is that of a single power-law, we obtain ÎČ≈0.35\beta \approx 0.35 and AV=4.9A_V = 4.9, in excess of the notional Galactic value. This is suggestive of extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same branch of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal declines would only match for a post jet break, ISM medium and electron index with p<2p<2. The shape of the JWST spectrum is near-identical in the optical/nIR to X-shooter spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests the SNe is either substantially fainter or bluer than SN~1998bw. Our {\em HST} observations also reveal a disc-like host galaxy, viewed close to edge-on that further complicates the isolation of any supernova component. The host galaxy appears rather typical amongst long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment

    A very luminous jet from the disruption of a star by a massive black hole

    Full text link
    Tidal disruption events (TDEs) are bursts of electromagnetic energy that are released when supermassive black holes at the centres of galaxies violently disrupt a star that passes too close1. TDEs provide a window through which to study accretion onto supermassive black holes; in some rare cases, this accretion leads to launching of a relativistic jet2–9, but the necessary conditions are not fully understood. The best-studied jetted TDE so far is Swift J1644+57, which was discovered in γ-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical detection of AT2022cmc, a rapidly fading source at cosmological distance (redshift z = 1.19325) the unique light curve of which transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-ray, submillimetre and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron ‘afterglow’, probably launched by a supermassive black hole with spin greater than approximately 0.3. Using four years of Zwicky Transient Facility10 survey data, we calculate a rate of 0.02−0.01+0.04 per gigapascals cubed per year for on-axis jetted TDEs on the basis of the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations11. Correcting for the beaming angle effects, this rate confirms that approximately 1 per cent of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs

    A multi-wavelength analysis of a collection of short-duration GRBs observed between 2012-2015

    Full text link
    We investigate the prompt emission and the afterglow properties of short duration gamma-ray burst (sGRB) 130603B and another eight sGRB events during 2012-2015, observed by several multi-wavelength facilities including the GTC 10.4m telescope. Prompt emission high energy data of the events were obtained by INTEGRAL/SPI/ACS, Swift/BAT and Fermi/GBM satellites. The prompt emission data by INTEGRAL in the energy range of 0.1-10 MeV for sGRB 130603B, sGRB 140606A, sGRB 140930B, sGRB 141212A and sGRB 151228A do not show any signature of the extended emission or precursor activity and their spectral and temporal properties are similar to those seen in case of other short bursts. For sGRB130603B, our new afterglow photometric data constraints the pre jet-break temporal decay due to denser temporal coverage. For sGRB 130603B, the afterglow light curve, containing both our new as well as previously published photometric data is broadly consistent with the ISM afterglow model. Modeling of the host galaxies of sGRB 130603B and sGRB 141212A using the LePHARE software supports a scenario in which the environment of the burst is undergoing moderate star formation activity. From the inclusion of our late-time data for 8 other sGRBs we are able to; place tight constraints on the non-detection of the afterglow, host galaxy or any underlying kilonova emission. Our late-time afterglow observations of the sGRB 170817A/GW170817 are also discussed and compared with the sub-set of sGRBs
    corecore