316 research outputs found

    Lectin ligands: New insights into their conformations and their dynamic behavior and the discovery of conformer selection by lectins

    Get PDF
    The mysteries of the functions of complex glycoconjugates have enthralled scientists over decades. Theoretical considerations have ascribed an enormous capacity to store information to oligosaccharides, In the interplay with lectins sugar-code words of complex carbohydrate structures can be deciphered. To capitalize on knowledge about this type of molecular recognition for rational marker/drug design, the intimate details of the recognition process must be delineated, To this aim the required approach is garnered from several fields, profiting from advances primarily in X-ray crystallography, nuclear magnetic resonance spectroscopy and computational calculations encompassing molecular mechanics, molecular dynamics and homology modeling. Collectively considered, the results force us to jettison the preconception of a rigid ligand structure. On the contrary, a carbohydrate ligand may move rather freely between two or even more low-energy positions, affording the basis for conformer selection by a lectin. By an exemplary illustration of the interdisciplinary approach including up-to-date refinements in carbohydrate modeling it is underscored why this combination is considered to show promise of fostering innovative strategies in rational marker/drug design

    Endothelial Dysfunction as a Consequence of Endothelial Glycocalyx Damage: A Role in the Pathogenesis of Preeclampsia

    Get PDF
    The endothelial glycocalyx is an intravascular compartment which consists of carbohydrate part of membrane glycoconjugates, free proteoglycans and associated proteins. It is thought to play an important role in the vascular tone regulation, vascular permeability and thromboresistance. It was suggested that the leading cause of endothelial dysfunction in various cardiovascular, inflammatory, and kidney diseases is the damage of the endothelial glycocalyx. This review presents the changes in the composition and structure of the endothelial glycocalyx in the settings of damage and under systemic inflammatory response, and the impact of these changes on the functions of endothelial cells and intercellular contacts, mediating the interaction of endothelium and the immune cells. The second issue, discussed in this article is a possible role of endothelial glycocalyx in the pathogenesis of preeclampsia—a complication of pregnancy associated with hypertension, proteinuria and edema. The reviewed data contribute a new insight in the endothelial dysfunction pathogenesis

    Impact of human bladder cancer cell architecture on autologous T-lymphocyte activation

    Get PDF
    To investigate the influence of tumor cell architecture on T-cell activation, we used an autologous human model based on 2 bladder tumor cell lines as targets for cytotoxic tumor-infiltrating lymphocytes (TILs). These tumor cell lines were grown in vitro as either standard 2-dimensional (2D) monolayers or 3-dimensional (3D) spheroids. T-cell activation was determined by measuring the production of three major cytokines (tumor necrosis factor, granulocyte/macrophage colony-stimulating factor and interferon-gamma), known to be secreted by most activated TILs. Changes in the architecture of target cells from 2D to 3D induced a dramatic decrease in their capacity for stimulating TILs. Interestingly, neither TIL infiltration nor MHC class I, B7.1 costimulatory or lymphocyte function-associated factor-3 adhesion molecule downregulation played a major role in this decrease. These findings demonstrate that tumor architecture has a major impact on T-cell activation and might be implicated in the escape of tumor cells from the immune system

    Locally targeted cytoprotection with dextran sulfate attenuates experimental porcine myocardial ischaemia/reperfusion injury

    Get PDF
    Aims Intravascular inflammatory events during ischaemia/reperfusion injury following coronary angioplasty alter and denudate the endothelium of its natural anticoagulant heparan sulfate proteoglycan (HSPG) layer, contributing to myocardial tissue damage. We propose that locally targeted cytoprotection of ischaemic myocardium with the glycosaminoglycan analogue dextran sulfate (DXS, MW 5000) may protect damaged tissue from reperfusion injury by functional restoration of HSPG. Methods and results In a closed chest porcine model of acute myocardial ischaemia/reperfusion injury (60 min ischaemia, 120 min reperfusion), DXS was administered intracoronarily into the area at risk 5 min prior to reperfusion. Despite similar areas at risk in both groups (39±8% and 42±9% of left ventricular mass), DXS significantly decreased myocardial infarct size from 61±12% of the area at risk for vehicle controls to 39±14%. Cardioprotection correlated with reduced cardiac enzyme release creatine kinase (CK-MB, troponin-I). DXS abrogated myocardial complement deposition and substantially decreased vascular expression of pro-coagulant tissue factor in ischaemic myocardium. DXS binding, detected using fluorescein-labelled agent, localized to ischaemically damaged blood vessels/myocardium and correlated with reduced vascular staining of HSPG. Conclusion The significant cardioprotection obtained through targeted cytoprotection of ischaemic tissue prior to reperfusion in this model of acute myocardial infarction suggests a possible role for the local modulation of vascular inflammation by glycosaminoglycan analogues as a novel therapy to reduce reperfusion injur

    Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo

    Get PDF
    Autoreactive B lymphocytes first encountering self-antigens in peripheral tissues are normally regulated by induction of anergy or apoptosis. According to the "two-signal" model, antigen recognition alone should render B cells tolerant unless T cell help or inflammatory signals such as lipopolysaccharide are provided. However, no such signals seem necessary for responses to T-independent type 2 (TI-2) antigens, which are multimeric antigens lacking T cell epitopes and Toll-like receptor ligands. How then do mature B cells avoid making a TI-2-like response to multimeric self-antigens? We present evidence that TI-2 antigens decorated with ligands of inhibitory sialic acid-binding Ig-like lectins (siglecs) are poorly immunogenic and can induce tolerance to subsequent challenge with immunogenic antigen. Two siglecs, CD22 and Siglec-G, contributed to tolerance induction, preventing plasma cell differentiation or survival. Although mutations in CD22 and its signaling machinery have been associated with dysregulated B cell development and autoantibody production, previous analyses failed to identify a tolerance defect in antigen-specific mutant B cells. Our results support a role for siglecs in B cell self-/nonself-discrimination, namely suppressing responses to self-associated antigens while permitting rapid "missing self"-responses to unsialylated multimeric antigens. The results suggest use of siglec ligand antigen constructs as an approach for inducing tolerance

    Spontaneous alloying in binary metal microclusters - A molecular dynamics study -

    Full text link
    Microcanonical molecular dynamics study of the spontaneous alloying(SA), which is a manifestation of fast atomic diffusion in a nano-sized metal cluster, is done in terms of a simple two dimensional binary Morse model. Important features observed by Yasuda and Mori are well reproduced in our simulation. The temperature dependence and size dependence of the SA phenomena are extensively explored by examining long time dynamics. The dominant role of negative heat of solution in completing the SA is also discussed. We point out that a presence of melting surface induces the diffusion of core atoms even if they are solid-like. In other words, the {\it surface melting} at substantially low temperature plays a key role in attaining the SA.Comment: 15 pages, 12 fgures, Submitted to Phys.Rev.

    A diverse range of bacterial and eukaryotic chitinases hydrolyzes the LacNAc (Gal<i>β</i>1-4GlcNAc) and LacdiNAc (GalNAc<i>β</i>1-4GlcNAc) motifs found on vertebrate and insect cells

    Get PDF
    There is emerging evidence that chitinases have additional functions beyond degrading environmental chitin, such as involvement in innate and acquired immune responses, tissue remodeling, fibrosis, and serving as virulence factors of bacterial pathogens. We have recently shown that both the human chitotriosidase and a chitinase from Salmonella enterica serovar Typhimurium hydrolyze LacNAc from Galβ1–4GlcNAcβ-tetramethylrhodamine (LacNAc-TMR (Galβ1–4GlcNAcβ(CH(2))(8)CONH(CH(2))(2)NHCO-TMR)), a fluorescently labeled model substrate for glycans found in mammals. In this study we have examined the binding affinities of the Salmonella chitinase by carbohydrate microarray screening and found that it binds to a range of compounds, including five that contain LacNAc structures. We have further examined the hydrolytic specificity of this enzyme and chitinases from Sodalis glossinidius and Polysphondylium pallidum, which are phylogenetically related to the Salmonella chitinase, as well as unrelated chitinases from Listeria monocytogenes using the fluorescently labeled substrate analogs LacdiNAc-TMR (GalNAcβ1–4GlcNAcβ-TMR), LacNAc-TMR, and LacNAcβ1–6LacNAcβ-TMR. We found that all chitinases examined hydrolyzed LacdiNAc from the TMR aglycone to various degrees, whereas they were less active toward LacNAc-TMR conjugates. LacdiNAc is found in the mammalian glycome and is a common motif in invertebrate glycans. This substrate specificity was evident for chitinases of different phylogenetic origins. Three of the chitinases also hydrolyzed the β1–6 bond in LacNAcβ1–6LacNAcβ-TMR, an activity that is of potential importance in relation to mammalian glycans. The enzymatic affinities for these mammalian-like structures suggest additional functional roles of chitinases beyond chitin hydrolysis

    Gene expression profiles of bladder cancers: evidence for a striking effect of in vitro cell models on gene patterns.

    Get PDF
    In order to assess the effect of in vitro models on the expression of key genes known to be implicated in the development or progression of cancer, we quantified by real-time quantitative PCR the expression of 28 key genes in three bladder cancer tissue specimens and in their derived cell lines, studied either as one-dimensional single cell suspensions, two-dimensional monolayers or three-dimensional spheroids. Global analysis of gene expression profiles showed that in vitro models had a dramatic impact upon gene expression. Remarkably, quantitative differences in gene expression of 2-63-fold were observed in 24 out of 28 genes among the cell models. In addition, we observed that the in vitro model which most closely mimicked in vivo mRNA phenotype varied with both the gene and the patient. These results provide evidence that mRNA expression databases based on cancer cell lines, which are studied to provide a rationale for selection of therapy on the basis of molecular characteristics of a patient\u27s tumour, must be carefully interpreted

    Lectin activity of the pneumococcal pilin proteins

    Get PDF
    Streptococcus pneumoniae is a leading cause of morbidity and mortality globally. The Pilus-1 proteins, RrgA, RrgB and RrgC of S. pneumoniae have been previously assessed for their role in infection, invasive disease and as possible vaccine candidates. In this study we have investigated the glycan binding repertoire of all three Pilus-1 proteins, identifying that the tip adhesin RrgA has the broadest glycan recognition of the three proteins, binding to maltose/cellobiose, α/β linked galactose and blood group A and H antigens. RrgB only bound mannose, while RrgC bound a subset of glycans also recognized by RrgA. Adherence of S. pneumoniae TIGR4 to epithelial cells was tested using four of the oligosaccharides identified through the glycan array analysis as competitive inhibitors. The blood group H trisaccharide provided the best blocking of S. pneumoniae TIGR4 adherence. Adherence is the first step in disease, and host glycoconjugates are a common target for many adhesins. This study has identified Pilus-1 proteins as new lectins involved in the targeting of host glycosylation by S. pneumoniae.Christopher J. Day, Adrienne W. Paton, Richard M. Harvey, Lauren E. Hartley-Tassell, Kate L. Seib, Joe Tiralongo, Nicolai Bovin, Silvana Savino, Vega Masignani, James C. Paton and Michael P. Jenning
    corecore