11 research outputs found

    Neogene calc-alkaline volcanism in Bobak and Sikh Kuh, Eastern Iran: implications for magma genesis and tectonic setting

    Get PDF
    The Neogene post-collisional volcanism in eastern Iran is represented by the Sikh Kuh and Bobak high-Na rocks including trachybasalt, trachyandesite, trachydacite, and dacite. We report whole rock geochemistry and Nd–Sr isotopic data which constrain the characteristics of the mantle source. The rocks are highly enriched in incompatible trace elements, suggesting a metasomatized subcontinental lithospheric mantle (SCLM) as the magma source. Felsic rocks record abundant petrographic evidence, major and trace element data, and isotopic (87Sr/86Sr(i) = 0.70727–0.70902) signatures indicative of fractional crystallization, and potentially, crustal assimilation. Such processes however, have not significantly affected the isotopic signatures (87Sr/86Sr(i) = 0.70417–0.70428) of the mafic members, suggesting that they are derived from a mantle source. The geochemical and isotopic data for the Sikh Kuh and Bobak volcanic rocks suggest that these Neogene magmas were derived from a small degree of partial melting (~ 2–10 vol%) of a spinel-bearing subcontinental lithospheric mantle source in a post-collisional setting. The generated more unfractionated mafic magmas erupted during an episode of extensional tectonics, presumably caused by extension that followed Eocene collision between the Lut and Afghan continental blocks. These melts interacted with continental crust during ascent, experiencing crystal fractionation, and crustal assimilation, to produce more evolved felsic volcanic rocks

    Lead and zinc geochemical behavior based on geological characteristics in Parkam Porphyry Copper System, Kerman, Iran

    No full text
    Parkam (Sarah) porphyry system is located on the metallogenic belt of Kerman, Iran. Due to existence of some copper-rich resources in this region, finding out the exact statistical characteristics such as distribution of data population, mean, variance and data population behavior of elements like Cu, Mo, Pb and Zn is necessary for interpreting their geological behavior. For this reason, precise calculation of statistical characteristics of Pb and Zn grade datasets was performed and results were interpreted geologically. The natures of Pb and Zn distributions were initially identified and their distributions were normalized through statistical treatment. Subsequently, the variograms were calculated for each exploration borehole and show that both Pb and Zn geochemical variates are spatially correlated. According to the similarity of the behavior of Pb and Zn in these calculations, it is decided to measure their exact behavior applying K-means clustering method. K-means clustering results show that the Zn grade varies linearly relative to that of Pb values and their behavior is similar. Based on the geochemical behavior similarity of Pb and Zn, throughout the pervasive secondary hydrothermal activity, they are remobilized in the similar manner, from the deep to the shallow levels of the mineralization zones. However, statistical analysis suggests that hydrothermal activity associated with secondary waters in Parkam is effective in remobilizing and enriching both Pb and Zn since they have similar geochemical characteristics. However, the process does not result in generation of economic concentrations
    corecore