188 research outputs found

    Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG)

    Get PDF
    Production of Synthetic Natural Gas (SNG) from biomass is an important step to decouple the use of bioenergy from the biomass production with respect to both time and place. While anaerobic digestion of wet biomass is a state-of-the art process, wood gasification to producer gas followed by gas cleaning and methanation has only just entered the demonstration scale. Power-to-Gas applications using biogas from biomass fermentation or producer gas from wood gasification as carbon oxide source are under development. Due to the importance of the (catalytic) methanation step in the production of SNG from dry biomass or within Power-to-Gas applications, the specific challenges of this step and the developed reactor types are discussed in this review

    Model-based meta-analysis of salbutamol pharmacokinetics and practical implications for doping control.

    Get PDF
    Salbutamol was included in the prohibited list of the World Anti-Doping Agency (WADA) in 2004. Although systemic intake is banned, inhalation for asthma is permitted but with dosage restrictions. The WADA established a urinary concentration threshold to distinguish accordingly prohibited systemic self-administration from therapeutic prescription by inhalation. This study aimed at evaluating the ability of the WADA threshold to differentiate salbutamol therapeutic use from violation of antidoping rules. Concentration-time profile of salbutamol in plasma and its excretion in urine was characterized through a model-based meta-analysis of individual and aggregate data collected after administration of a large range of doses following different modes of administration and under a variety of conditions. The developed model adequately fitted salbutamol plasma and urine concentration-time profiles of the 13 selected studies. Model-based simulations confirmed that a wide range of salbutamol urine concentrations might be measured after drug intake. Although violation of the WADA Code can be strongly suspected in individuals showing very high salbutamol urine concentrations, uncertainty remains for values close to the WADA threshold as they can be compatible with both permitted therapeutic use and violation. Although not entirely discriminant, the current WADA rule is globally supported by our appraisal. It could be further improved by a slight and reasonable adjustment of inhaled daily dosages allowed for therapeutic use. Our model might help antidoping experts in the evaluation of suspected doping cases through confronting the athlete's urine measurements with their allegations about salbutamol treatment

    Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion

    Get PDF
    A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium. (c) 2012 Elsevier Ltd. All rights reserved

    Online elemental analysis of process gases with ICP-OES: A case study on waste wood combustion

    Get PDF
    A mobile sampling and measurement system for the analysis of gaseous and liquid samples in the field was developed. An inductively coupled plasma optical emission spectrometer (ICP-OES), which is built into a van, was used as detector. The analytical system was calibrated with liquid and/or gaseous standards. It was shown that identical mass flows of either gaseous or liquid standards resulted in identical ICP-OES signal intensities. In a field measurement campaign trace and minor elements in the raw flue gas of a waste wood combustor were monitored. Sampling was performed with a highly transport efficient liquid quench system, which allowed to observe temporal variations in the elemental process gas composition. After a change in feedstock an immediate change of the element concentrations in the flue gas was detected. A comparison of the average element concentrations during the combustion of the two feedstocks showed a high reproducibility for matrix elements that are expected to be present in similar concentrations. On the other hand elements that showed strong differences in their concentration in the feedstock were also represented by a higher concentration in the flue gas. Following the temporal variations of different elements revealed strong correlations between a number of elements, such as chlorine with sodium, potassium and zinc, as well as arsenic with lead, and calcium with strontium. (c) 2012 Elsevier Ltd. All rights reserved

    Sequential administration of temozolomide and fotemustine: Depletion of O6-alkyl guanine-DNA transferase in blood lymphocytes and in tumours

    Get PDF
    Background: The DNA repair protein O6-alkylguanine-DNA alkyl transferase (AT) mediates resistance to chloroethylnitro-soureas. Agents depleting AT such as DTIC and its new analogue temozolomide (TMZ) can reverse resistance to chloro-ethylnitrosoureas. We report the results of a dose finding study of TMZ in association with fotemustine. Patients and methods: Twenty-four patients with metastatic melanoma or recurrent glioma were treated with escalating dose of oral or intravenous TMZ ranging from 300 to 700 mg/m2, divided over two days. Fotemustine 100 mg/m2 was given intravenously on day 2, 4 hours after TMZ. AT depletion was measured in peripheral blood mononuclear cells (PBMCs) and in selected cases in melanoma metastases and was compared to TMZ pharmacokinetics. Results: The maximum tolerated dose (MTD) of TMZ was 400 mg/m2 (200 mg/m2/d) when associated with fotemustine the 2nd day with myelosuppression as dose limiting toxicity. The decrease of AT level in PBMCs was progressive and reached 34% of pretreatment values on day 2. There was however wide interindividual variability. AT reduction was neither dose nor route dependent and did not appear to be related to TMZ systemic exposure (AUC). In the same patients, AT depletion in tumour did not correlate with the decrease of AT observed in PBMCs. Conclusions: PBMCs may not be used as a surrogate of tumour for AT depletion. Further study should concentrate on the pharmacokinetic pharmacodynamic relationship in tumour to provide the basis for individually tailored therap

    Sequential administration of temozolomide and fotemustine: depletion of O6-alkyl guanine-DNA transferase in blood lymphocytes and in tumours

    Get PDF
    BACKGROUND: The DNA repair protein O6-alkylguanine-DNA alkyl transferase (AT) mediates resistance to chloroethylnitrosoureas. Agents depleting AT such as DTIC and its new analogue temozolomide (TMZ) can reverse resistance to chloroethylnitrosoureas. We report the results of a dose finding study of TMZ in association with fotemustine. PATIENTS AND METHODS: Twenty-four patients with metastatic melanoma or recurrent glioma were treated with escalating dose of oral or intravenous TMZ ranging from 300 to 700 mg/m2, divided over two days. Fotemustine 100 mg/m2 was given intravenously on day 2, 4 hours after TMZ. AT depletion was measured in peripheral blood mononuclear cells (PBMCs) and in selected cases in melanoma metastases and was compared to TMZ pharmacokinetics. RESULTS: The maximum tolerated dose (MTD) of TMZ was 400 mg/m2 (200 mg/m2/d) when associated with fotemustine the 2nd day with myelosuppression as dose limiting toxicity. The decrease of AT level in PBMCs was progressive and reached 34% of pretreatment values on day 2. There was however wide interindividual variability. AT reduction was neither dose nor route dependent and did not appear to be related to TMZ systemic exposure (AUC). In the same patients, AT depletion in tumour did not correlate with the decrease of AT observed in PBMCs. CONCLUSIONS: PBMCs may not be used as a surrogate of tumour for AT depletion. Further study should concentrate on the pharmacokinetic pharmacodynamic relationship in tumour to provide the basis for individually tailored therapy

    Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability

    Get PDF
    Imatinib has revolutionised the treatment of chronic myeloid leukaemia (CML) and gastrointestinal stromal tumours (GIST). Using a nonlinear mixed effects population model, individual estimates of pharmacokinetic parameters were derived and used to estimate imatinib exposure (area under the curve, AUC) in 58 patients. Plasma-free concentration was deduced from a model incorporating plasma levels of alpha1-acid glycoprotein. Associations between AUC (or clearance) and response or incidence of side effects were explored by logistic regression analysis. Influence of KIT genotype was also assessed in GIST patients. Both total (in GIST) and free drug exposure (in CML and GIST) correlated with the occurrence and number of side effects (e.g. odds ratio 2.7±0.6 for a two-fold free AUC increase in GIST; P<0.001). Higher free AUC also predicted a higher probability of therapeutic response in GIST (odds ratio 2.6±1.1; P=0.026) when taking into account tumour KIT genotype (strongest association in patients harbouring exon 9 mutation or wild-type KIT, known to decrease tumour sensitivity towards imatinib). In CML, no straightforward concentration–response relationships were obtained. Our findings represent additional arguments to further evaluate the usefulness of individualising imatinib prescription based on a therapeutic drug monitoring programme, possibly associated with target genotype profiling of patients

    Phylogeography of Sardinian Cave Salamanders (Genus Hydromantes) Is Mainly Determined by Geomorphology

    Get PDF
    Detecting the factors that determine the interruption of gene flow between populations is key to understanding how speciation occurs. In this context, caves are an excellent system for studying processes of colonization, differentiation and speciation, since they represent discrete geographical units often with known geological histories. Here, we asked whether discontinuous calcareous areas and cave systems represent major barriers to gene flow within and among the five species of Sardinian cave salamanders (genus Hydromantes) and whether intraspecific genetic structure parallels geographic distance within and among caves. We generated mitochondrial cytochrome b gene sequences from 184 individuals representing 48 populations, and used a Bayesian phylogeographic approach to infer possible areas of cladogenesis for these species and reconstruct historical and current dispersal routes among distinct populations. Our results show deep genetic divergence within and among all Sardinian cave salamander species, which can mostly be attributed to the effects of mountains and discontinuities in major calcareous areas and cave systems acting as barriers to gene flow. While these salamander species can also occur outside caves, our results indicate that there is a very poor dispersal of these species between separate cave systems

    Hypoxia Potentiates Glioma-Mediated Immunosuppression

    Get PDF
    Glioblastoma multiforme (GBM) is a lethal cancer that exerts potent immune suppression. Hypoxia is a predominant feature of GBM, but it is unclear to the degree in which tumor hypoxia contributes to this tumor-mediated immunosuppression. Utilizing GBM associated cancer stem cells (gCSCs) as a treatment resistant population that has been shown to inhibit both innate and adaptive immune responses, we compared immunosuppressive properties under both normoxic and hypoxic conditions. Functional immunosuppression was characterized based on production of immunosuppressive cytokines and chemokines, the inhibition of T cell proliferation and effector responses, induction of FoxP3+ regulatory T cells, effect on macrophage phagocytosis, and skewing to the immunosuppressive M2 phenotype. We found that hypoxia potentiated the gCSC-mediated inhibition of T cell proliferation and activation and especially the induction of FoxP3+T cells, and further inhibited macrophage phagocytosis compared to normoxia condition. These immunosuppressive hypoxic effects were mediated by signal transducer and activator of transcription 3 (STAT3) and its transcriptionally regulated products such as hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). Inhibitors of STAT3 and HIF-1α down modulated the gCSCs' hypoxia-induced immunosuppressive effects. Thus, hypoxia further enhances GBM-mediated immunosuppression, which can be reversed with therapeutic inhibition of STAT3 and HIF-1α and also helps to reconcile the disparate findings that immune therapeutic approaches can be used successfully in model systems but have yet to achieve generalized successful responses in the vast majority of GBM patients by demonstrating the importance of the tumor hypoxic environment
    corecore