19 research outputs found

    Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests

    Get PDF
    Peatland pole forest is the most carbon-dense ecosystem in Amazonia, but its spatial distribution and species composition are poorly known. To address this knowledge gap, we quantified variation in the floristic composition, peat thickness, and the amount of carbon stored above and below ground of 102 forest plots and 53 transects in northern Peruvian Amazonia. This large dataset includes 571 ground reference points of peat thickness measurements across six ecosystem types. These field data were also used to generate a new land-cover classification based on multiple satellite products using a random forest classification. Peatland pole forests are floristically distinctive and dominated by thin-stemmed woody species such as Pachira nitida (Malvaceae), Platycarpum loretense (Rubiaceae), and Hevea guianensis (Euphorbiaceae). In contrast, palm swamps and open peatlands are dominated by Mauritia flexuosa (Arecaceae). Peatland pole forests have high peat thickness (274 ± 22 cm, mean ± 95% CI, n = 184) similar to open peatlands (282 ± 46 cm, n = 46), but greater than palm swamps (161 ± 17 cm, n = 220) and seasonally-flooded forest, terra firme, and white-sand forest where peat is rare or absent. As a result, peatland pole forest has exceptional carbon density (1,133 ± 93 Mg C ha−1). The new sites expand the known distribution of peatland pole forest by 61% within the Pastaza-Marañón Foreland basin, mainly alongside the Tigre river, to cover a total of 7540 km2 in northern Peruvian Amazonia. However, only 15% of the pole forest area is within a protected area, whilst an additional 26% lies within indigenous territories. The current low levels of protection and forest degradation but high threat from road paving projects makes the Tigre river basin a priority for conservation. The long-term conservation of peatland pole forests has the potential to make a large contribution towards international commitments to mitigate climate change

    Optimization of Feature Extraction Algorithm for License Plate of Vehicle, Detection Using Histogram Method

    Full text link
    Volume 1 Issue 2 (April 2013

    MicroRNA Let-7i Is a Promising Serum Biomarker for Blast-Induced Traumatic Brain Injury

    No full text
    Blast-induced traumatic brain injury (TBI) is of significant concern in soldiers returning from the current conflicts in Iraq and Afghanistan. Incidents of TBI have increased significantly in the current conflicts compared to previous wars, and a majority of these injuries are caused by improvised explosive devices. Currently, no specific technique or biomarker is available for diagnosing TBI when no obvious clinical symptoms are present. MicroRNAs are small RNA (∼ 22nts) molecules that are expressed endogenously and play an important role in regulating gene expression. MicroRNAs have emerged as novel serum diagnostic biomarkers for various diseases. In this study, we studied the effect of blast overpressure injury on the microRNA signatures in the serum of rats. Rats were exposed to three serial 120-kPa blast overpressure exposures through a shockwave tube. Blood and cerebrospinal fluid were collected at various time points after injury, and microRNA modulation was analyzed using real-time PCR. Five microRNAs were significantly modulated in the serum samples of these animals at three time points post-injury. Further, we also found that the levels of microRNA let-7i are also elevated in cerebrospinal fluid post-blast wave exposure. The presence of microRNA in both serum and cerebrospinal fluid immediately after injury makes microRNA let-7i an ideal candidate for further studies of biomarkers in TBI
    corecore