440 research outputs found

    Bio)Sensor Approach in the Evaluation of Polyphenols in Vegetal Matrices

    Get PDF
    Polyphenols are compounds widely distributed in the plant kingdom and have attracted much attention, because of their health benefits and important properties such as radical scavenging, metal chelating agents, inhibitors of lipoprotein oxidation, anti-inflammatory and anti-allergic activities. Due to their important role in the diet and in therapy, it is important to estimate their content in the different matrices of interest. Besides classical analytical methods, new emerging technologies have also appeared in the last decade aiming for simple and eventually cheap detection of polyphenols. This review focused on the recent applications of biosensing-based technologies for polyphenol estimation in vegetal matrices, using different transduction principles. These analytical tools are generally fast, giving responses in the order of a few seconds/minutes, and also very sensitive and generally selective (mainly depending on the enzyme used). Direct measurements in most of the investigated matrices were possible, both in aqueous and organic phases

    Lightweight high-density diffuse optical tomography using sCMOS detection

    Get PDF
    The widespread adoption of optical neuroimaging has been restricted by the tradeoff between cap wearability and brain coverage [1]. Increased coverage requires more fibers and larger imaging consoles, however these changes drastically reduce the wearability of the imaging cap and the portability of the entire system. The size of the detection fibers, which is driven by signal-to-noise considerations, is the primary obstacle to fabricating more wearable and portable optical neuroimaging arrays. Here we report on a design that leverages the low-noise of scientific CMOS cameras, along with binning and noise reduction algorithms to use fibers with approximately 30x smaller cross-sectional area than current high-density diffuse optical tomography (HD-DOT) systems [2]. We have developed a Super-Pixel sCMOS Diffuse Optical Tomography (SP-DOT) system (Fig. 1a) that uses 200um diameter source and detector fibers, with a lightweight low-profile, wearable design. A super-pixel algorithm leverages pixel binning to provide dynamic range (DNR), Noise Equivalent Power (NEP), and cross- talk (CT) specifications comparable to previous HD-DOT [2]. We have demonstrated retinotopic mapping with a SP-DOT system (Fig. 1). The system has a high DNR (\u3e105), high frame rate (\u3e6Hz) and low NEP (\u3c 9fW/√Hz). Please click Additional Files below to see the full abstract

    Persistent organochlorine compounds in fetal and maternal tissues: evaluation of their potential influence on several indicators of fetal growth and health

    Get PDF
    Some organochlorine compounds, such as polychlorinated biphenyls (PCBs), have a tendency to bioaccumulate in humans and predators at the top of the food chain. We have recently confirmed the transplacental transfer of these compounds and the present study has been designed on the same material with the aim of investigating their potential health effects on newborns from 70 pregnant women, resident in a Northern Italy industrial town. Organochlorine compounds [namely, p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT), p,p'-dichlorodiphenyldichloroethene (p,p'-DDE), hexachlorobenzene (HCB), and PCBs] have been analyzed both in cord and maternal serum, placenta, and maternal subcutaneous adipose tissue by GC-MSD. p,p'-DDT levels in the adipose tissue resulted significantly (p<0.05) related to birth length. Mothers of neonates born by preterm programmed caesarean delivery showed significantly (p<0.005 for both) higher serum p,p'-DDE serum concentrations and p,p'-DDT levels in the adipose tissue, as compared to mothers delivering at term

    Rapid chemical analysis and antiprotozoal effect of the solvent extracts and the essential oil of Artemisia indica

    Get PDF
    Artemisia indica is used as antipyretic in malarial fevers during malaria outbreaks in India [1]. We selected this plant because reports concerning the presence of artemisinin is contradictory, the content of methoxyflavonoids that potentiate the antimalarial efficacy of artemisinin has remained unstudied and the essential oil of the plant from different regions shows great chemical variations. Solvent extracts [petroleum ether, n-hexane, dichloromethane, acetone, MeOH or EtOH (96, 80 or 60% v/v), and hot water] of A. indica leaves originated from the West Bengal region (India) were assessed by HPLC-DAD and HPLC-MS for the content of artemisinin and the characteristic Artemisia methoxyflavonoids, eupatin, casticin, chrysoplenetin, cirsilineol, chrysosphenol-D and artemetin. None of the extracts contained artemisinin or the methoxyflavonoids chrysosphenol-D and artemetin, while all extracts contained chrysoplenetin. Eupatin, casticin and cirsilineol were found in all extracts except for the p. ether, n-hexane and hot water infusion. The acetone and EtOH extracts contained the highest levels of polymethoxyflavonoids (1.15 – 1.17%), whereas the infusion was devoid of them. The essential oil of the plant was obtained by hydrodistillation and analyzed by GC and GC-MS simultaneously. Of the 92 compounds detected in the oil, camphor (13.0%) and caryophyllene oxide (10.87%) were the major components. All solvent extracts and the volatile oil showed in vitro antimalarial activity (1.8 – 20 µg/mL). Except for the infusion, all extracts were also active against other parasitic protozoa (Trypanosoma b. rhodesiense, T. cruzi, Leishmania donovani). This is the first study investigating both artemisinin and polymethoxyflavonoid content and detailed in vitro antiprotozoal potential of A. indica extracts and the essential oil

    Bionics-based surgical training using 3D printed photopolymers and smart devices

    Get PDF
    Additive manufacturing technologies support the realization of surgical training devices using, typically, photopolymers-based materials. Unfortunately, the material jetting family, able to print a large range of soft and hard polymers, requires expensive machines and materials, which are not always available. On the other hand, vat polymerization fails in the resolution/volume ratio and in the mechanical properties reconstruction. Stereolithographic 3D printers, mostly used in dental surgery, make possible to realize cheap and sustainable models for training activity using only one material, reducing the possibility to obtain different mechanical characteristics. Moreover, the printed objects have to be treated (i.e. curing post-processing) in order to obtain the required performances, that could be preserved for long term storing. The aim of the proposed approach is to assure the surgeons' skills improvement through bionic-based surgical 3D printed models and smart devices, able to reproduce the same perception of a real surgical activity. We demonstrated how it is possible develop smart devices capable to take into account the same characteristics of different materials (i.e. bone and spongy bone) even if stored for a long time

    Bioactive molecules from plants: discovery and pharmaceutical applications

    Get PDF
    The plant kingdom is one of the richest sources of bioactive compounds with pharmaceutical potential [...
    • …
    corecore