117 research outputs found

    ANSWERING GEOSPARQL QUERIES OVER RELATIONAL DATA

    Get PDF
    In this paper we present the system Ontop-spatial that is able to answer GeoSPARQL queries on top of geospatial relational databases, performing on-the-fly GeoSPARQL-to-SQL translation using ontologies and mappings. GeoSPARQL is a geospatial extension of the query language SPARQL standardized by OGC for querying geospatial RDF data. Our approach goes beyond relational databases and covers all data that can have a relational structure even at the logical level. Our purpose is to enable GeoSPARQL querying on-the-fly integrating multiple geospatial sources, without converting and materializing original data as RDF and then storing them in a triple store. This approach is more suitable in the cases where original datasets are stored in large relational databases (or generally in files with relational structure) and/or get frequently updated

    ANSWERING GEOSPARQL QUERIES OVER RELATIONAL DATA

    Get PDF
    In this paper we present the system Ontop-spatial that is able to answer GeoSPARQL queries on top of geospatial relational databases, performing on-the-fly GeoSPARQL-to-SQL translation using ontologies and mappings. GeoSPARQL is a geospatial extension of the query language SPARQL standardized by OGC for querying geospatial RDF data. Our approach goes beyond relational databases and covers all data that can have a relational structure even at the logical level. Our purpose is to enable GeoSPARQL querying on-the-fly integrating multiple geospatial sources, without converting and materializing original data as RDF and then storing them in a triple store. This approach is more suitable in the cases where original datasets are stored in large relational databases (or generally in files with relational structure) and/or get frequently updated

    SexTant: Visualizing Time-Evolving Linked Geospatial Data

    Get PDF
    We present SexTant, a Web-based system for the visualization and exploration of time-evolving linked geospatial data and the creation, sharing, and collaborative editing of "temporally-enriched" thematic maps which are produced by combining dierent sources of such data

    From big data to big information and big knowledge: The case of Earth observation data

    Get PDF
    Some particularly important rich sources of open and free big geospatial data are the Earth observation (EO) programs of various countries such as the Landsat program of the US and the Copernicus programme of the European Union. EO data is a paradigmatic case of big data and the same is true for the big information and big knowledge extracted from it. EO data (satellite images and in-situ data), and the information and knowledge extracted from it, can be utilized in many applications with financial and environmental impact in areas such as emergency management, climate change, agriculture and security

    Sextant: Visualizing time-evolving linked geospatial data

    Get PDF
    The linked open data cloud is constantly evolving as datasets get continuously updated with newer versions. As a result, representing, querying, and visualizing the temporal dimension of linked data is crucial. This is especially important for geospatial datasets that form the backbone of large scale open data publication efforts in many sectors of the economy (e.g., the public sector, the Earth Observation sector). Although there has been some work on the representation and querying of linked geospatial data that change over time, to the best of our knowledge, there is currently no tool that offers spatio-temporal visualization of such data. This is in contrast with the existence of many tools for the visualization of the temporal evolution of geospatial data in the GIS area. In this article, we present Sextant, a Web-based system for the visualization and exploration of time-evolving linked geospatial data and the creation, sharing, and collaborative editing of “temporally-enriched” thematic maps which are produced by combining different sources of such data. We present the architecture of Sextant, give examples of its use and present applications in which we have deployed it

    Using neuroevolution for predicting mobile marketing conversion

    Get PDF
    This paper addresses user Conversion Rate (CVR) prediction within the context of Mobile Performance Marketing. Specifically, we adapt two main neuroevolution methods: Neuroevolution of Augmenting Topologies (NEAT) and Hypercube-based NEAT (HyperNEAT). First, we discuss two mechanisms for increasing execution speed (parallelism and data sampling); a strategy for preventing excessive network complexity with NEAT; and a rolling window scheme for performing an online learning. Then, we present experimental results, using distinct datasets and testing both offline and online learning environments.ThisarticleisaresultoftheprojectNORTE-01-0247-FEDER-017497,supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This work was also supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019

    BET bromodomain inhibitors suppress inflammatory activation of gingival fibroblasts and epithelial cells from periodontitis patients

    Get PDF
    BET bromodomain proteins are important epigenetic regulators of gene expression that bind acetylated histone tails and regulate the formation of acetylation-dependent chromatin complexes. BET inhibitors suppress inflammatory responses in multiple cell types and animal models, and protect against bone loss in experimental periodontitis in mice. Here, we analyzed the role of BET proteins in inflammatory activation of gingival fibroblasts (GFs) and gingival epithelial cells (GECs). We show that the BET inhibitors I-BET151 and JQ1 significantly reduced expression and/or production of distinct, but overlapping, profiles of cytokine-inducible mediators of inflammation and bone resorption in GFs from healthy donors (IL6, IL8, IL1B, CCL2, CCL5, COX2, and MMP3) and the GEC line TIGK (IL6, IL8, IL1B, CXCL10, MMP9) without affecting cell viability. Activation of mitogen-activated protein kinase and nuclear factor-κB pathways was unaffected by I-BET151, as was the histone acetylation status, and new protein synthesis was not required for the anti-inflammatory effects of BET inhibition. I-BET151 and JQ1 also suppressed expression of inflammatory cytokines, chemokines, and osteoclastogenic mediators in GFs and TIGKs infected with the key periodontal pathogen Porphyromonas gingivalis. Notably, P. gingivalis internalization and intracellular survival in GFs and TIGKs remained unaffected by BET inhibitors. Finally, inhibition of BET proteins significantly reduced P. gingivalis-induced inflammatory mediator expression in GECs and GFs from patients with periodontitis. Our results demonstrate that BET inhibitors may block the excessive inflammatory mediator production by resident cells of the gingival tissue and identify the BET family of epigenetic reader proteins as a potential therapeutic target in the treatment of periodontal disease

    Wildfire monitoring using satellite images, ontologies and linked geospatial data

    Get PDF
    Advances in remote sensing technologies have allowed us to send an ever-increasing number of satellites in orbit around Earth. As a result, Earth Observation data archives have been constantly increasing in size in the last few years, and have become a valuable source of data for many scientific and application domains. When Earth Observation data is coupled with other data sources many pioneering applications can be developed. In this paper we show how Earth Observation data, ontologies, and linked geospatial data can be combined for the development of a wildfire monitoring service that goes beyond applications currently deployed in various Earth Observation data centers. The service has been developed in the context of European project TELEIOS that faces the challenges of extracting knowledge from Earth Observation data head-on, capturing this knowledge by semantic annotation encoded using Earth Observation ontologies, and combining these annotations with linked geospatial data to allow the development of interesting applications
    corecore