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Abstract. This paper addresses user Conversion Rate (CVR) predic-
tion within the context of Mobile Performance Marketing. Specifically, we
adapt two main neuroevolution methods: Neuroevolution of Augmenting
Topologies (NEAT) and Hypercube-based NEAT (HyperNEAT). First,
we discuss two mechanisms for increasing execution speed (parallelism
and data sampling); a strategy for preventing excessive network complex-
ity with NEAT; and a rolling window scheme for performing an online
learning. Then, we present experimental results, using distinct datasets
and testing both offline and online learning environments.
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1 Introduction

The massive usage of portable computing devices (e.g., tablet, smartphone)
increased the value of mobile markets, giving rise to Demand-Side Platforms
(DSPs). A DSP is a broker that matches users to advertisements and involves
users, publishers and advertisers. Publishers attract a vast audience of users,
which want to access a popular content web site (e.g., games or news portal).
The web site is funded by requiring users to click a dynamic ad link before ac-
cessing the content. The goal of the DSP is to select the ad to be displayed to
the user. If there is a product or service acquisition (a conversion), then the DSP
automatically returns a portion of the advertiser profit to the publisher.

In this paper, we approach the Conversion Rate (CVR) task [5], aiming to
predict if a user will produce a conversion when seeing an ad. Such prediction is
a key tool to assist the DSP in better assigning ads to users. The CVR task has
been approached using several machine learning models, mostly linear models,
such as the linear Poisson regression [3] or Logistic Regression (LR) [5]. More
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sophisticated methods, such as Gradient Boosting Decision Trees [16], Random
Forest [5], XGboost [11] or Deep Learning [15], have also been proposed.

This paper describes the implementation of a data-driven approach for CVR
user prediction, with application to a real-world DSP, managed by Olamobile,
which is a mobile marketing worldwide company. Specifically, we explore neu-
roevolution algorithms, which use Evolutionary Algorithms (EAs) to design and
fit Artificial Neural Networks (ANNs). An important advantage of these methods
is the ability to automatically optimize the topology and weights of the networks
[7]. The automatic design of ANN is particularly valuable in this marketing do-
main, since data is created with high velocity and there are several dynamic
changes (e.g., new campaigns, changes in online user buying behaviors). Thus,
new data-driven models need to be constantly created, which is clearly facilitated
by the usage of automatic data-driven model selection procedures. Within our
knowledge, the application of neuroevolution to Mobile Performance Marketing
is non-existent. Moreover, several related works tend to consider only prediction
classification measures and not the computational effort. For example, the deep
learning method used in [15] is much more complex than LR and the classifica-
tion performance of the deep learning models only improved very slightly (e.g.,
0.1 percentage points) when compared with LR. Also, several related studies
(e.g., [16,5,10,15]) only address static offline learning scenarios, with a single
holdout train and test split.

In this paper, we adapt and compare two neuroevolution algorithms for
CVR prediction: NeuroEvolution of Augmenting Topologies (NEAT) [13] and
Hypercube-based NEAT (HyperNEAT) [12]. We test the algorithms with two
categorical data transforms, two traffic modes (TEST and BEST), and with
static and dynamic environments, measuring the predictive classification perfor-
mance and computational effort. This document is organized as follows: Section
2 presents the collected data and neuroevolution methods; Section 3 details the
performed experiments and obtained results; finally, Section 4 describes the main
conclusions.

2 Materials and Methods

2.1 Collected Data

The analyzed real-world DSP produces redirects and sales data events. Redirects
are created each time a user clicks an ad, while a sale is produced when there is
a product acquisition. CVR is modeled using binary classification. This task is
complex since the DSP generates big data, with high volume and velocity prop-
erties. There are millions of redirects and thousands of sales per hour. Moreover,
only a small fraction of redirects lead to sales. Also, only a partial set of char-
acterization features are available due to privacy and technological constraints
(e.g., it is not possible to identify a single user). And the nominal input features
often present a high cardinality, with hundreds or thousands of distinct levels.

We had access to an Intel Xeon 1.70GHz server with 56 cores and 2TB of
disk space, which is limited when compared with the DSP datacenter. Due to
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server limitations (e.g., storage, communication costs), we work with sampled
data, retrieved from the DSP datacenter over a two-week period, from 2018-05-
30 to 2018-06-13. The data includes redirects and sales related with two traffic
modes: TEST and BEST. The former is used to test the performance for new
incoming campaigns (20% of the traffic), while the latter includes only the best
TEST performing campaigns (80%). The sampled data contains 484, 665 BEST
mode observations, of which 156, 637 (32.3%) were sales, and the TEST dataset
contains 319, 875 observations, of which only 29, 596 (9.25%) resulted in sales.

The collected eleven input features are summarized in Table 1, partially char-
acterizing the advertiser, publisher and user. The table details the cardinality
(number of levels) for each feature and traffic mode. The datasets contain two
other attributes (not shown in the table): a time-stamp – when the sale or redi-
rect occurred; and the target – binary variable with the sale (1) or no sale (0)
label.

Table 1: Features.

Feature Description Cardinality Examples
BEST TEST

campaign advertisement campaign 1389 1741 Numeric ID
vertical advertisement type 5 4 Video, Mainstream
application advertised product 1018 1101 Numeric ID
partner publisher 167 200 Numeric ID
account publisher type 8 9 Network, Developer
manager publisher account manager 19 34 Numeric ID
operator user mobile carrier or WiFi 404 448 Vodafone, WiFi
browser user web browser 14 14 Chrome, Safari
region user region 23 23 Asia, South America
country user country 198 225 India, Brazil
city user city 13423 10690 Dhaka, Sao Paulo

All features are nominal, including the numeric identifiers. Since the neural
network base learner requires numeric inputs, we compare two feature handling
modes: RAW and Inverse Document Frequency (IDF). RAW uses original nu-
meric identifier raw values. For features that contain text, Raw Encoding (RAW)
converts each category into a number 1..N , where N is the cardinality of the fea-
ture, by order of appearance. The IDF encodes each level as IDF (x) = ln(N

fx
),

where N is the total number of instances, and fx is the number of occurrences
of category x [2]. The levels are ranked according to their frequency, with val-
ues that are more frequent being closer to 0, and those that are less frequent
ranging up to a maximum value of ln(N), for fx = 1. The transformations are
performed using only training data, with an encoding mapping being stored in
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order to transform test data values. Any unseen input value is transformed in
a special way, depending on the encoding: with RAW, it takes the value 0; and
with IDF, it attains the maximum value ln(N).

2.2 Neuroevolution Models

The predictive models employ an ANN trained by an EA, aiming to estimate
the target probability: p(1|x) ∈ [0, 1], where x denotes the input vector for a
particular redirect. Two neuroevolution algorithms are tested: NEAT [13] and
HyperNEAT [12]. To implement the algorithms, we used the modern MultiNEAT
library (http://multineat.com), which includes recent deep learning features,
such as usage of the ReLU activation function [8] (see Table 2).

NEAT is a popular neuroevolution technique with three main characteristics:
tracking of genes through historical markings; protection of innovation through
speciation; and minimization of dimensionality through incremental growth from
a minimal structure [13]. NEAT uses a direct encoding, where individuals con-
tain every connection of the ANN. In contrast, HyperNEAT [12] uses an indirect
encoding, allowing to evolve large-scale ANNs. In HyperNEAT, the individual
is a Compositional Pattern-Producing Network (CPPN), an intermediate neural
network which is used to generate the weights of the final network connections.
The method requires a grid of nodes (neurons), called the substrate, to be previ-
ously defined by the user. Then, for each potential connection in the substrate,
the CPPN takes as inputs the geometric positions of the two neurons and out-
puts the connection weight. A connection is not expressed if the magnitude of
its weight is below a minimal threshold.

These neuroevolution methods share the same EA, which includes two phases
in each generation: evolution and evaluation. The evolution uses the selection,
crossover and mutation operators that are applied to generate a new population.
The evaluation requires the highest computational effort and it is based on the
Area Under the ROC Curve (AUC) of the Receiver Operating Characteristic
(ROC) [6], computed using the ANN individual predictions.

To speed up the evaluation, two mechanisms were implemented: parallel eval-
uation of each individual of the population and sampling of the training data.
Since the evaluation of each individual of the population is independent, each
AUC calculation is executed as a parallel task that is run in a unique core.
Moreover, the fitness computation is applied only to a random sample of data.
We note that working with the full data would require a high computational
effort and in particular a computational effort would be “wasted” to compute
the fitness of very weak solutions. The sampling procedure works as follows: in
every generation, a balanced sample (with both sale and no sale redirects) of a
predefined size is randomly selected from the whole training dataset. All indi-
viduals are then evaluated over the same sample. Balanced sampling is used to
avoid classifiers that are too biased towards the more prevalent “no sale” class.

The sampling calls into question which individual should be returned at
the end of the execution, since the fitness scores represent the performance of
individuals over a portion and not all of the training data. This issue is addressed

http://multineat.com
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by storing in memory the best individuals along the generations: the elite. When
the termination criterion is met, an extra evaluation is performed over the elite
using the whole training dataset, aiming to select the best ANN.

The sample size becomes an extra hyperparameter of the algorithm. The
optimum sample size should be small enough to provide a fast execution speed,
allowing for a high number of generations to be completed, but not so small
that it hurts the algorithm capability of adjusting to the training data. The
trade-off is shown in Figure 1, where the two extremes on the low and high
end of four predefined sample sizes provide the worst results. Note that, for a
meaningful comparison, the execution time was the same for all sample sizes
(total of 20 minutes).
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Fig. 1: Comparison of sample sizes.

There is a tendency for network complexity to increase with the number of
generations. This growth is expected, and positive, as long as it leads to sig-
nificantly better networks. However, this bloat phenomenon, if not controlled or
limited, results in an ever increasing computational effort for both the evolution-
ary algorithm and the processing of network predictions (Figure 2a). To limit
bloat, we dynamically adjust the mutation rates for addition and removal of neu-
rons and connections. This strategy works by introducing a simplification phase
whenever the mean complexity of the population overcomes a predefined limit.
During the simplification phase, the probability of mutations that add complex-
ity (i.e., neurons or connections) is gradually decreased, while the probability
of mutations that remove complexity is increased by the same amount. Once
the complexity of the population is diminished, the simplification phase ends.
and the default behaviour of the EA is resumed. We employ this strategy over
NEAT, calling it NEAT Pruned (NEATP), with the simplification phase starting
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at 100 connections. A simplification strategy cannot be applied to HyperNEAT,
because it uses an indirect encoding. A comparison between NEAT and NEATP
is shown in Figure 2, revealing that NEATP limits the network complexity with
no significant impact on performance.
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Fig. 2: Bloat control by adjustment of mutation rates.

The neuroevolution hyperparameters were optimized by using the irace tool
[9]. Irace samples various configurations of hyperparameters and tests how the
algorithm performs with them, according to the AUC of the best individual. To
avoid overfitting, the AUC given to irace was calculated over a separate dataset,
with earlier sampled DSP data. The final hyperparameters obtained for both
NEAT and HyperNEAT are shown in Table 2. We note that the sample size
value of 2, 000 is consistent with Figure 1a results.

Table 2: Hyperparameters set using the irace tool.

Parameter NEAT
Hyper-
NEAT Parameter NEAT

Hyper-
NEAT

sample size 2 000 2 000 add neuron rate 3.25% 8.04%
substrate hidden layers – 8 remove neuron rate 2.30% 6.68%
substrate neurons per layer – 23 add link rate 13.3% 9.56%
population size 120 145 remove link rate 9.1% 4.65%
min species 6 4 mutation weight rate 64.8% 64.6%
max species 10 11 mutation bias rate 6.7% 5.8%
survival rate 66.8% 34.4% mutation activation rate 0.4% 0.6%
crossover rate 89.0% 74.1% Sigmoid neuron rate 33.4% 50%
interspecies rate 0.25% 0.23% Relu neuron rate 33.3% 0%
mutation rate 34.8% 69.2% Gaussian neuron rate 33.3% 0%
elitism 2.5% 2.8% Sine neuron rate 0% 50%
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2.3 Evaluation

We test both static (offline) and dynamic (online learning) scenarios. We use the
AUC classification metric [6], since it is a popular metric in CVR [5,15]. The
AUC metric is independent of false positive and negative costs, which might
not be known during the training phase; also, it is independent of the class
distribution, thus it can be used with highly unbalanced tasks, such as the CVR
data. The quality of a AUC value is often interpreted as: 0.5, the performance
of a random classifier; 0.6 to 0.7, reasonable; 0.7 to 0.8, good; 0.8 to 0.9, very
good; 0.9 to 1, excellent.

First, we compare NEAT, NEATP and HyperNEAT over the two types of
numerical transformations (RAW and IDF) with static data, using a simpler
holdout validation, in which the data is randomly split into train (70%) and test
(30%) sets. The algorithms run for 10,000 generations, with 6 parallel processes
being used for the evaluations. Then, we test a dynamic scenario by using a
rolling window scheme [14]. In the first iteration, the last W = 4 days of data
are used to fit the model, which is tested to predict the next T = 1 day events.
After a predefined number of generations, there is a shift in time, which results
in the second iteration. It is assumed that one day has passed, thus the training
data slides S = 1 day. The neuroevolution population is continuously adjusted
to the new training data and then predictions are computed for the next T = 1
day. And so on.

The continuous update of data requires the IDF transform to be updated
after each rolling window iteration. The two inputs of IDF – fx (frequency of
category x) and N (size of the data sample) – are then calculated as a weighted
average over time:

f tx = λ · f t−1
x + fnewx (1)

N t = λ ·N t−1 +Nnew (2)

where the index t represents the rolling window iteration; fnewx and Nnew are the
frequency of category x and size of the data sample over the latest window; and
λ is a coefficient within the range [0, 1] used to progressively “forget” information
from past iterations. In this work, and after some experimentation with an older
dataset (collected before 30th May of 2018), λ was set to 0.8.

3 Results

The progression of fitness along the generations is represented in Figure 3, and a
summary of the results obtained is given in Table 3. To establish a baseline, the
performance of a Logistic Regression (LR) model is also presented, implemented
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) offline learning algorithm
of the rminer R package [4].

Regarding the two numerical transformations, IDF presents a slight improve-
ment over RAW in terms of the AUC metric for all BEST traffic cases and also
HyperNEAT and TEST data. Focusing on the algorithms, it is clear that Hy-
perNEAT does not perform as well as NEAT, which can be due to two reasons.
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Fig. 3: Fitness of the best individual per generation with static data (top graphs
are related with BEST traffic, while bottom plots consider TEST traffic).

First, HyperNEAT might be more suitable to problems with geometric relation-
ships among inputs [12]. Second, results suggest that large-scale networks do not
seem to significantly increase AUC, as evidenced by the similar performances of
NEAT and NEATP. And HyperNEAT tends to evolve more complex networks
when compared with NEAT. Overall, NEAT and NEATP yield the best results.
In particular, NEATP successfully maintained the ANN complexity near the
predefined limit of 100 connections without any significant decrease in AUC,
which reflects in a shorter training time. When compared to the LR model, the
neuroevolution algorithms present better predictive AUC results for BEST data
(e.g., 0.78 versus 0.74) and a similar discrimination level for TEST mode data
(AUC of 0.76).

We only compare the neuroevolution models in the dynamic rolling window
scenario because the standard LR model only works in an offline learning sce-
nario. The neuroevolution results are compared in Figure 4, which plots the test
AUC value of the best ANN per rolling window iteration; and in Table 4, as the
median of all iterations.

The performance of the algorithms and numerical transformations with dy-
namic data is similar to their performance with static data. The highlight of
these results, and focusing in particular in Figure 4, is that the algorithms are
capable of building upon previous training in order to adjust to new data, while
maintaining a steady (TEST data) or even improved (BEST traffic) performance.
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Table 3: Results with static data (averaged over 10 runs).

Mode Algorithm AUC1 Time2 Complexity3

RAW IDF RAW IDF RAW IDF

BEST

NEAT 0.77 0.78 81 107 31 · 54 40 · 103
NEATP 0.77 0.78 81 85 29 · 50 31 · 50
HyperNEAT 0.70 0.74 215 225 184 · 620 184 · 355
LR 0.71 0.74 0.15 0.15 - -

TEST

NEAT 0.76 0.76 94 157 53 · 139 79 · 281
NEATP 0.76 0.76 88 100 41 · 96 56 · 109
HyperNEAT 0.73 0.75 198 216 184 · 316 184 · 643
LR 0.76 0.75 0.15 0.15 - -

1 Calculated over the test set.
2 Total training time in minutes.
3 Complexity (nodes · connections) of the returned network.
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Fig. 4: AUC per rolling window iteration (top graphs are related with BEST
traffic, while bottom plots consider TEST traffic).

Thus, it is possible to update the predictive model according to the latest set
of data using a relatively small number of generations. In this case, the total
of 10,000 generations is split over 10 rolling window iterations, each, therefore,
running for 1,000 generations. Consequently, although the total training time is
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Table 4: Results with dynamic data (median of 10 rolling window iterations and
averaged over 10 runs).

Mode Algorithm AUC Time Complexity

RAW IDF RAW IDF RAW IDF

BEST
NEAT 0.78 0.79 8 11 23 · 60 29 · 124
NEATP 0.78 0.79 8 9 19 · 57 22 · 65
HyperNEAT 0.73 0.75 21 23 184 · 315 184 · 691

TEST
NEAT 0.76 0.76 9 14 24 · 89 38 · 156
NEATP 0.76 0.76 8 10 24 · 82 31 · 105
HyperNEAT 0.73 0.74 20 21 184 · 340 184 · 643

about the same as with static data, the training time per rolling window itera-
tion is 1

10 of that amount: about 10 minutes with NEAT or NEATP, as shown
in Table 4. This allows for new data to be learned very quickly, in the context
of a dynamic environment.

The best predictive classification performances were achieved by the NEAT
and NEATP models. As for the input attribute transformation methods, IDF
improves the AUC values when compared with the RAW encoding for: BEST
traffic – all methods; and TEST traffic – HyperNEAT. As for the computational
effort, NEATP is the fastest method, requiring around just 8 to 10 minutes for
each training, followed by NEAT and then HyperNEAT.

Considering the predictive accuracy and computational effort, we select IDF
NEATP as the best neuroevolution strategy. Globally, interesting results were
achieved, with an average (over 10 runs) rolling window median AUC of 0.79
(BEST) and 0.76 (TEST), which corresponds to a good discrimination level. This
level compares favourably with other similar state of the art CVR prediction
works, with an average AUC value of: 0.71 (LR) and 0.72 (random forest) in
[5]; 0.76 (XGboost) and 0.80 (random forest) in [11]; and 0.71 (Deep Learning
model) in [15]. In particular, the analyzed DSP currently employs a random
user to advertisement matching when working with the TEST mode traffic,
which corresponds to an AUC of 0.5. The NEATP classification performance is
26 percentage points better when compared with the random DSP assignment
for new marketing campaigns. Also, NEATP can handle big data and produce
daily predictions in real-time.

4 Conclusions

In this paper, we address user mobile marketing CVR prediction. As a case
study, we had access to recent big data gathered from a real-world DSP com-
pany. We particularly focus on neuroevolution models, which present the advan-
tage of automatically designing the ANN topology and weights. We compared
two neuroevolution algorithms that automatically design ANN for CVR predic-
tion: NEAT and HyperNEAT. NEAT uses a direct encoding, while HyperNEAT
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employs an indirect encoding. We also compared two categorical to numerical
transformations and two learning scenarios: static (offline) and dynamic (on-
line). The prediction models were compared using both predictive classification
performance and computational effort.

Considering the classification performance, computational effort and bloat,
the best results were obtained by the NEATP model (a NEAT variant that
limits the ANN growth). It produces better classification discrimination results
when compared with HyperNEAT and an offline Logistic Regression (LR) in
the static experiments. Also, it produces a steady or improved performance in
the dynamic experiments, comparing favourably against HyperNEAT. Overall, a
good classification discrimination level was obtained, resulting in a Area Under
the ROC Curve (AUC) of 0.79 for BEST and 0.76 for TEST traffic. Moreover,
under the tested experimental setup, NEATP requires a training time around 10
minutes, allowing its daily usage to perform real-time predictions. This model
is particularly valuable for the TEST traffic, since the analyzed DSP uses a
random selection of advertisements for new incoming TEST campains, which
corresponds to an AUC of 0.5.

As future work, we wish to compare the proposed neuroevolution approaches
with deep learning methods (e.g., Deep Feedforward Neural Network), using both
classification performance and computational effort measures. Also, we intend
to extend the proposed neuroevolution methods by exploring the use of a local
search, based on gradient descent (e.g., backpropagation), to further tune the
ANN connection weights. In particular, we aim to explore in the dynamic DSP
learning what is the best mixed global and local search strategy: if the improved
connections should be encoded back into the EA chromosomes (Lamarckian
evolution) or not (Baldwin effect) [1].
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