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ABSTRACT:

In this paper we present the system Ontop-spatial that is able to answer GeoSPARQL queries on top of geospatial relational databases,
performing on-the-fly GeoSPARQL-to-SQL translation using ontologies and mappings. GeoSPARQL is a geospatial extension of the
query language SPARQL standardized by OGC for querying geospatial RDF data. Our approach goes beyond relational databases and
covers all data that can have a relational structure even at the logical level. Our purpose is to enable GeoSPARQL querying on-the-fly
integrating multiple geospatial sources, without converting and materializing original data as RDF and then storing them in a triple
store. This approach is more suitable in the cases where original datasets are stored in large relational databases (or generally in files
with relational structure) and/or get frequently updated.

1. INTRODUCTION

This paper describes the system Ontop-spatial (Bereta and
Koubarakis, 2016), which provides semantic data integration for
geospatial data, creating virtual geospatial RDF graphs on top
of geospatial databases and enabling on-the-fly GeoSPARQL-to-
SQL translation.

In the recent years, there is an emerging interest from researchers
of various domains (e.g., earth scientists, geologists, cartogra-
phers, civil engineers) that are involved in the processing of
geospatial data, to publish them as RDF data to increase its value
by combining it with other open data. As a result, the Web of
data is populated with a rapidly increasing amount of geospatial
data bringing challenges that have been addressed by the Seman-
tic Web community proposing data models, query languages and
applications for the representation, modeling and visualization of
linked geospatial data.

These efforts have been highlighted by the establishment of the
Open Geospatial Consortium (OGC) standard GeoSPARQL, a
geospatial extension of RDF and SPARQL (Open Geospatial
Consortium, 2012). Other extensions of RDF and SPARQL were
also proposed, such as the framework of stRDF and stSPARQL
which extends RDF and SPARQL with both space and time fea-
tures (Kyzirakos et al., 2010, Bereta et al., 2013). These stan-
dards of geospatial support have also been implemented in sev-
eral RDF stores, such as Parliament1, uSeekM2, Virtuoso3, Star-
dog4 and Strabon5 (Kyzirakos et al., 2012). These technologies
enabled geospatial data practitioners to (i) convert their data (usu-
ally relational like) into interoperable data formats such as RDF,
(ii) store the data in RDF format into geospatial RDF stores to-
gether with other geospatial data, and (iii) express rich geospatial
queries combining multiple datasets, as for example the query
Retrieve all flooded areas in Europe that overlap with water bod-
ies (according to CORINE), and points of interest (from Open-

∗Corresponding author
1http://parliament.semwebcentral.org
2https://www.w3.org/2001/sw/wiki/USeekM
3https://virtuoso.openlinksw.com
4http://www.stardog.com/
5http://strabon.di.uoa.gr

StreetMap) near them. This query retrieves information about
floods, combined with two other open geospatial datasets, namely
the RDF version CORINE Land Cover dataset6, and the RDF ver-
sion of OpenStreetMap data7.

In practice geospatial data are often originally stored in geospa-
tial DBMSs (e.g. PostGIS and Oracle). Especially in the cases
when these databases get frequently updated, some users are dis-
couraged to convert the data into RDF and store it to triple stores
every time new updates arrive. Thus, in these cases the value
of this data cannot be interlinked with other linked open data to
increase its value.

The Semantic Web community addressed this issue by develop-
ing Ontology-Based Data Access (OBDA) techniques and sys-
tems that offer on-the-fly SPARQL-to-SQL translation based on
ontologies and mappings, such as Ontop8 and Morph-RDB9. Us-
ing the OBDA approach, one can create semantic RDF graphs
on top of relational data using ontologies and mappings. Map-
ping is a way to encode how relational data can be translated into
RDF terms. The standard language for encoding mappings is the
R2RML mapping language10. In OBDA, one avoids materializa-
tion of the relational data into RDF; SPARQL queries are trans-
lated into SQL on-the-fly and are evaluated by the underlying
DBMS.

However, existing OBDA systems did not provide support for
geospatial data until the creation of Ontop-spatial. Ontop-spatial,
the geospatial extension of the OBDA system Ontop, is able
to connect to geospatial databases and create geospatial RDF
graphs on top of them using ontologies (that are extensions of
the GeoSPARQL ontology) and mappings. This virtual approach
avoids the need of materialization and facilitates data integra-
tion, as it enables users to pose the same GeoSPARQL queries
they would pose over the materialized RDF data. GeoSPARQL
queries are translated by Ontop-spatial on-the-fly into the respec-
tive SQL queries and are evaluated in the geospatial DBMS. Cur-

6https://datahub.io/dataset/corine-land-cover
7http://linkedgeodata.org/
8http://ontop.inf.unibz.it
9https://github.com/oeg-upm/morph-rdb

10https://www.w3.org/TR/r2rml/
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rently, PostGIS, Spatialite and Oracle Spatial are supported as
back-end.

We have evaluated Ontop-spatial by extending the benchmark
Geographica11, which was initially designed to evaluate the per-
formance of geospatial RDF stores, with support for OBDA
systems. We compared Ontop-spatial with the state-of-the-art
geospatial RDF store Strabon. The results showed that in Ontop-
spatial generally achieves significantly better performance than
Strabon.

This paper is structured as follows. First, we present related back-
ground information in Section 2. and in Section 3. we present re-
lated work in this area. In Section 4. we describe in detail the im-
plementation of our approach in the system Ontop-spatial and in
Section 5. we measure the peformance of our implementation in
comparison to the state-of-the-art. Finally, Section 6. concludes
the paper and Section 7. presents future work.

2. BACKGROUND

This section presents background information in the area of the
Semantic Web and the technologies and frameworks that form the
context in which our work has been developed.

2.1 RDF and SPARQL

We describe below fundamental concepts of the data model RDF
and the query language SPARQL, as defined in (Pérez et al.,
2009).

Definition 1. RDF triple. Let I, B and L be pairwise disjoint
infinite sets. I represents the st of IRIs, B the set of blank nodes,
and L represents the set of Literals. An RDF triple is a tuple of
the form (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L), where s is the
subject, p is the predicate, and o is the object.

Definition 2. An RDF graph is a set of RDF triples.

Definition 3. A SPARQL query is a tuple of the form (V, P,G),
where P is a SPARQL algebra expression, V is the set of vari-
ables that occur in P , and G is an RDF graph.

Definition 4. A triple pattern is a tuple of the form (I∪L∪V )×
(I ∪ V )× (I ∪ L ∪ V ).

Definition 5. A graph pattern is defined recursively as one of the
following:

• a triple pattern

• an expression of the form P1 OP P2, where OP is one of
the SPARQL algebraic operators: AND ,UNION ,OPT .

• an expression of the form P FILTER R, where P is a graph
pattern and R is a SPARQL built-in condition. A SPARQL
built-in condition is a boolean expression that is constructed
using elements of the set V ∪ IL and constants, logical
connectives (¬,

∨
,
∧
), equality (=) and inequality symbols

(≥,≤, <,>), unary predicates (bound, isBlank, isIRI), and
other features.

11http://geographica.di.uoa.gr

2.2 stRDF and stSPARQL

An example of an RDF triple is provided below.

PREFIX ex : <http://example.com>

PREFIX rdf: <https://www.w3.org/TR/rdf-schema/>

ex:id434 rdf:type ex:school .

The triple described above denotes that the entity identified with
the URI ex:id434 is a school.

Since the framework of RDF and SPARQL does not contain sup-
port for the representation and querying of geometries, as soon as
the first geospatial datasets appeared in the web of data as RDF,
the need for representing geospatial features properly emerged.
Several extensions of the data model RDF and the query lan-
guage stSPARQL were proposed in literature. The data model
stRDF and the query language stSPARQL are extensions of RDF
and SPARQL 1.1 respectively, developed for the representation
and querying of spatial (Kyzirakos et al., 2012) and temporal
data (i.e., the valid time of triples (Bereta et al., 2013)). More
specifically, the data model stRDF proposes the representation of
geometries as literals of the datatypes Well-known-text (WKT)
and GML, that are OGC standards. The temporal dimension
of the data model stRDF introduces also the period datatype,
allowing intervals to be represented as literals of the datatype
strdf:period. Similarly, the query language stSPARQL allows
spatial operations on geometries as well as temporal operations
on instants and periods. The framework of stRDF and stSPARQL
also introduces the valid time dimension: a fourth element can be
added to a triple to represent the valid time of a triple, i.e., the
time when the fact represented by the triple is valid. The valid
time of a triple can be represented either by a timestamp (i.e.,
an xsd:datetime literal) or a period (i.e., an strdf:period

literal). By this way, the framework of stRDF and stSPARQL
is suitable for the representation and querying of geospatial data
that changes over time.

2.3 GeoSPARQL

Parallel to the development of the framework of stRDF and
stSPARQL, another framework for the representation and query-
ing of geospatial data on the Semantic Web was being de-
veloped named GeoSPARQL, which is now an OGC standard
(Open Geospatial Consortium. OGC GeoSPARQL - A geo-
graphic query language for RDF data, 2012). GeoSPARQL and
stSPARQL were developed independently, but they have more
similarities than differences. There most important common
features are the following: (i) they both adopt the OGC stan-
dards WKT and GML for representing geometries, (ii) they both
support spatial analysis functions as extension functions. More
specifically, both query languages are extensions of SPARQL 1.1
and support topological functions defined in the OGC standard
“OpenGIS Simple Feature Access for SQL” (Open Geospatial
Consortium. OpenGIS Simple Features Specification For SQL,
1999), and they also implement the Egenhofer (Egenhofer, 1989)
and the RCC-8 (Randell et al., 1992) topological relation fam-
ilies as SPARQL 1.1 extension functions. On the other hand,
GeoSPARQL does not provide support for valid time and spa-
tial updates, unlike stSPARQL. In this work, we only consider
GeoSPARQL. However our approach is orthogonal with respect
to other geospatial extensions, such as stSPARQL, as well as
other vocabularies. The components of GeoSPARQL, as shown
in Figure 1 are the following:
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Figure 1. GeoSPARQL components

Figure 2. GeoSPARQL ontology

Core component. This component defines high level RDF-
S/OWL classes for spatial objects. The GeoSPARQL class hi-
erarchy can be seen in Figure 2 and the respective ontology can
be accessed at http://www.opengis.net/ont/geosparql.

Topology vocabulary extension. This component defines RDF
properties for asserting and querying topological relations be-
tween spatial objects and covers different families of topological
relations, such as Simple Features Access, RCC8, and Egenhofer.

Geometry extension. The Geometry extension component de-
fines the literal representation of geometries by introducing new
datatypes that correspond to the OGC standards WKT and GML

respectively. In order to connect features with their geome-
tries and the serializations of these geometries, the properties
geo:hasGeometry, geo:hasSerialization are also defined in this
component of GeoSPARQL. For example we provide the follow-
ing RDF graph:

ex:id434 rdf:type ex:school .

ex:id434 geo:hasGeometry ex:geo1 .

ex:geo1 geo:asWKT "POINT(23.7,37.9)"^^geo:wktLiteral .

The set of triples described above denote that ex:id434 is a school
that has a geometry and the WKT representation of this geometry
is POINT(23.7,37.9).

Geometry Topology extension. This component defines a set
of functions that can be used in queries to evaluate topological
operations between geometries.

RDFS entailment extension. This extension basically includes
RDF and RDFS reasoning support. By this way, GeoSPARQL
queries that are posed against GeoSPARQL endpoints that im-
plement this component of GeoSPARQL will not only consider
the triples that are explicitly included in the knowledge base, but

only the ones that can be derived from the knowledge base and
the ontology.

Query rewrite extension. This component of GeoSPARQL de-
fines a set of transformation rules that convert geospatial qualita-
tive queries into quantitative ones, when explict qualitative infor-
mation is not available in the knowledge base. For example, let us
consider the qualitative GeoSPARQL query described in Figure
3.

SELECT ?x WHERE {

?x geo:sfOverlaps ?y

Figure 3. Example of a spatial qualitative query

The query described above retrieves features that ovelap with
each other. However, results will be returned only if the respec-
tive qualitative information exists in the knowledge base, for ex-
ample a triple similar to the following:

ex:geo1 sf:Overlaps ex:geo2 .

The triple provided above denotes that two features identified
with the URIs ex:geo1 and ex:geo2 overlap with each other.
But in the case when no such information exists in the knowl-
edge base, but aternatively the actual geometry representations
of the respective features are available, then the query provided
above could be transformed into the query described in Figure 4.

SELECT ?x WHERE {

?x geo:asWKT ?geo1 .

?y geo:asWKT ?geo2 .

FILTER(geof:sfOverlaps (?geo1 , ?geo2 ))}

Figure 4. Example of a spatial quantitative query

2.4 Linked Open Data

The framework of Linked Data is a paradigm which brings data
as first class citizens of the Web and it involves a set of technolo-
gies and methodologies, described in (Heath and Bizer, 2011)
so that following this paradigm, data can be published and con-
sumed easily both by machines and humans, in compliance to
well-established open standards.

As described in (Heath and Bizer, 2011), the Linked Data
paradigm in a nutshell includes the following principles:

• Data should be published as RDF.

• Resources should be represented by dereferencable URIs, so
that they can be looked up.

• Data should be available via SPARQL endpoints so that they
can be queried using SPARQL.

• Data should be interlinked: Links that connect resources be-
tween the same or different datasets that are published as
Linked Open Data should be discovered, materialized and
published as well. By this way, the value of the original data
is increased by the correlation to other information that is
available on the Web.
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Figure 5. Linking Open Data cloud diagram 2017, by A. Abele,
J. P. McCrae, P. Buitelaar, A. Jentzsch and R. Cyganiak

The EU project LOD212 focused on developing methodologies
and tools to define and implement the different phases of extract-
ing, publishing and querying of data as linked open data.

Figure 5 shows the Linked Open Data cloud13. In this figure,
datasets that are currently available as Linked Open Data are rep-
resented as circles whose size is analogous to the size of the re-
spective dataset. The datasets are grouped in different categories
according to the domain they belong to and the arrows that exist
between the datasets represent the links that connect their enti-
ties. Geospatial datasets that are available as Linked Open Data
have blue colour.

The EU research projects LEO14 developed tools and method-
ologies for publishing Earth Observation data as linked data, ex-
tending the work done by the project LOD2. In the context of
this work, the lifecycle of Linked earth observation data was de-
fined and implemented, as described in detail in (Koubarakis et
al., 2016) and shown in Figure 6 .

Interlinking!

Publishing!

Storage/Querying!

Transformation!
into RDF!

Semantic!
Annotation!

Knowledge Discovery!
and Data Mining!

Content 
Extraction!

Data Cleaning!

Search/Browse/!
Explore/Visualize!

Ingestion!

Processing!

Archiving!

Cataloguing!

Figure 6. The lifecycle of Linked Earth Observation Data

2.5 Ontology-based Data Access (OBDA)

Although the value of the linked data paradigm has been widely
recognized by the scientific and industrial communities, its adop-
tion by users is sometimes a challenging task. Especially in the

12http://lod2.eu/Welcome.html
13http://lod-cloud.net/
14http://www.linkedeodata.eu/

cases where data is stored in large databases that get updated fre-
quently, users are discouraged to convert their relational data into
RDF and thus exploit the benefits of making their data available
as Linked data and increase its value by correlating it with other
datasets.

Ontology-based data access (OBDA) refers to technologies that
aim at accessing the data using ontologies but without material-
izing it as RDF triples, allowing the on-the-fly creation of vir-
tual RDF graphs instead. This is achieved using mappings as
first class citizens. Mappings encode how relational data cor-
respond to RDF terms. The standard language for encoding this
information is the W3C standard R2RML15. Parallel -and in most
cases prior- to the development of R2RML, most OBDA systems
supported their own mapping languages. For example, the sys-
tem Ontop supports also its native OBDA language apart from
R2RML. The mappings that will be given as examples in the rest
of this paper will follow this native mapping language of Ontop
for the convinience of the reader, as it is more compact and easily
readable.

3. RELATED WORK

In this section we briefly highlight related systems for querying
linked geospatial data.

3.1 Geospatial RDF stores

There is wide variety of geospatial triple stores that imple-
ment a big subset of GeoSPARQL specification, such as Stra-
bon (Kyzirakos et al., 2010), that also implements stRDF and
stSPARQL, Parliament16, uSeekM17, and Virtuoso18 that supports
some geospatial features but not the GeoSPARQL specification.
In a recent study described in (Garbis et al., 2013), it is shown
that Strabon is the most efficient in terms of performance and the
most rich in functionalities geospatial RDF store that supports
GeoSPARQL. Strabon is distributed as free and open source soft-
ware.19

3.2 OBDA systems

In the area of Ontology-based data access, there are a few OBDA
systems that offer on-the-fly SPARQL-to-SQL translation on top
of relational databases, such as Ontop (Rodriguez-Muro and
Rezk, 2015), Ultrawrap (Sequeda and Miranker, 2013), D2RQ20

and Morph (Priyatna et al., 2014). Although these systems
have been available for some time now, there was no geospatial
support in them until the creation of Ontop-spatial (Bereta and
Koubarakis, 2016), the geospatial extension of the open source
system Ontop that is also presented in this paper. Recently,
GeoSPARQL OBDA support was added in Oracle Spatial and
Graph, which is now part of Oracle 12c Release 2.

4. IMPLEMENTATION OF ONTOP-SPATIAL

In this section we present our geospatially-enhanced OBDA ap-
proach and its implementation in the system Ontop-spatial21 as a
geospatial extension of the open source system Ontop.

15https://www.w3.org/TR/r2rml/
16http://parliament.semwebcentral.org
17https://www.w3.org/2001/sw/wiki/USeekM
18https://virtuoso.openlinksw.com
19http://strabon.di.uoa.gr
20http://d2rq.org/
21



4.1 Geospatial Mappings

Mappings play a crucial role in the OBDA paradigm. In the fol-
lowing, we provide an example. Figure 7 shows a PostGIS ta-
ble with the following columns: id, srid and strdgeo. The
column with name strdfgeo stores geometries in Well-known-
binary (WKB) format, and the column srid stores the code of the
Coordinate Reference System (CRS) in which these geometries
are expressed. In this case, all geometries are represented using
the World Geodetic System 1984 (WGS84) that corresponds to
the CRS code 4326.

Figure 7. Table schema

Now we want to represent the relational data of the table depicted
in Figure 7 as virtual triples. Figure 8 shows how this can be
encoded using the language R2RML and Figure 9 shows the re-
spective representation in the Ontop native OBDA language. Ac-
cording to the mapping shown in Figure 8, virtual triples are cre-
ated that represent the serialization of geometries as literals of
the datatype geosparql:wktLiteral. It is signified that these
virtual triples are not created beforehand or materialized. When
a GeoSPARQL query arrives that involves these triples, the re-
spective SQL query takes part in the resulting SQL query that
is produced after the GeoSPARQL-to-SQL translation that is de-
scribed in more detail in 4.2. Notably, although the source SQL
query in the mappings retrieves the geometry column to populate
the respective WKT literals as-is, i.e., in binary format, the result-
ing virtual triples are in WKT format. This translation is carried
out internally by the system.

<cl_Geometries >

a rr:TriplesMap;

rr:logicalTable [ rr:sqlQuery """

select id,strdfgeo from geo_values

""" ];

rr:subjectMap [rr:template npd:{id};

rr:class geo:Geometry

];

rr:predicateObjectMap [

rr:predicate geo:asWKT;

rr:objectMap [

rr:column "strdfgeo" ;

rr:datatype geo:wktLiteral

]].

Figure 8. R2RML mappings

The mappings illustrated in Figure 9 encode similar information,
but the source SQL query slightly deviates from the respective
SQL query of the R2RML mappings in Figure 8, as it also con-
tains the PostGIS function ST Transform. This function trans-
forms the geometries stored in the table shown in Figure 7 to the
Coordinate Reference System wth EPSG code 3035 on-the-fly,
so the WKT representation of the transformed geometries will be
the object of the virtual triples. This example demonstrates the

flexibility that is offered by the use of mappings and the OBDA
paradigm in general; relational data can be pre-processed on-the-
fly before being transformed as virtual triples. Following the tra-
ditional approach, an extra pre-processing step would be added
for the manipulation of the data and the tranformed data would
need to be materialized. Following the approach that we propose,
the original data remain intact and each time we want to change
the kind of pre-processing that needs to be performed we simply
change the mappings instead of changing the actual data.

[MappingDeclaration]

[[ mappingId mapping -767351779

target npd:{id} a geo:Geometry ;

geo:asWKT {geo }^^ geo:wktLiteral

source SELECT id,

ST_Transform(strdfgeo , 3035) as

geo FROM geo_values ]]

Figure 9. OBDA mappings

4.2 GeoSPARQL-to-SQL translation

We have developed a GeoSPARQL-to-SQL approach by extend-
ing a state-of-the-art SPARQL-to-SQL approach described in
(Rodriguez-Muro and Rezk, 2015). In a nutshell, the SPARQL-
to-SQL approach that is presented in (Rodriguez-Muro and Rezk,
2015) comprises the following major steps:

• A SPARQL query arrives and it is translated into a Datalog
program

• After several optimizations and simplifications taking place,
taking into account the mappings, and the schema and some
characteristics of tables that are involved in the mappings
(e.g., constraints) and the the final Datalog program is pro-
duced.

• The Datalog program is translated into an SQL query that is
evaluated by the underlying DBMS that serves as back-end.

• After the evaluation of the SQL in the DBMS, the results
are returned as RDF terms, according the ontology and the
mappings that have been given as input.

In order to support GeoSPARQL, we have extended the approach
described above (and in more detail in (Rodriguez-Muro and
Rezk, 2015)) as follows:

• A GeoSPARQL query arrives and gets translated into Data-
log.

• If the GeoSPARQL query contains functions in the filter
clause, each function is represented in the Datalog program
by the respective geospatial predicate that we have intro-
duced. If the GeoSPARQL query contains a GeoSPARQL
predicate instead of a function, then the Datalog program
contains the same geospatial predicate. By this way, both
quantitative and qualitative geospatial queries are treated
uniformly. Quantitative geospatial queries are those that in-
clude operations on geometries (e.g., geometries ovelapping
each other). Qualitative geospatial qualitative geospatial
queries is those who express qualitative geospatial relations
between features, for which the geometries may or may not
be known (e.g., Rivers that overlap with lakes). This is how
the query rewrite component of GeoSPARQL is imple-
mented.
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• In the Datalog-to-SQL translation phase, the geospatial
predicates that are included in the datalog program are trans-
lated into the respective geospatial operators that are sup-
ported by the underlying DBMS.

The GeoSPARQL-to-SQL translation that we described above
is illustrated in figure 1 it it is also described in more detail in
(Bereta and Koubarakis, 2016).

Our approach is implemented as a geospatial extension of the sys-
tem Ontop, named Ontop-spatial22. It is available as free and
open-source software, under GPL Apache License.

4.3 Beyond GeoSPARQL

Raster data support.

None of the geospatial extensions of the framework of RDF and
SPARQL, such as stRDF and stSPARQL and GeoSPARQL have
considered support for raster data. The main challenge that lies
behind this is twofold: First, a raster file is associated with a ge-
ometry only as a whole. It is not straight-forward to associate
separate raster cells to a geometry, they have to be vector-ized
first (i.e., translated into polygons). Second, every raster cell is
associated with one or more values. In order to convert all infor-
mation contained in a raster file into RDF, then multiple triples
should describe a raster cell, producing a large amount of triples
for a whole raster file. However, not all of this information is
needed. In most of the use cases, only the information that de-
rives from a raster file and qualifies certain criteria (e.g., value
constraints) is all that is needed to be converted into RDF. This
means that the raster file needs to be processed and then the re-
sults of this processing are useful as RDF, while any other infor-
mation is redundant. These challenges have discouraged the sci-
entific community from converting and materializing raster data
to RDF.

In the work described in this paper, we address these challenges
by following the OBDA paradigm:

• Ontop-spatial can connect to a geospatial relational database
with a raster adapter.

• The raster datatype is internally handled in the same way as
its vector counterpart (e.g., the Geometry datatype).

• The following GeoSPARQL operators are overloaded for
supporting the respective operations having raster data
as arguments in addition to vector data: ST Contains,
ST Covers, ST Within, ST Overlaps, ST Intersects,
ST Touches.

• PostGIS operators can be added in the mappings in order
to process the raster data and create virtual geospatial RDF
views above them. For example, certain operators can be
used in the SQL query of a mapping in order to refine the
results, refining the information from the original raster file
that will be virtually translated into RDF.

4.4 Beyond Relational databases

Even when data is not originally stored into relational geospatial
databases, but is available in a format that can be easily imported
into one (e.g., Shapefiles, GeoTIFF, etc.), exploiting the adapters

22https://github.com/ConstantB/ontop-spatial

that many geospatial databases have implemented for widely-
used geospatial file formats, our approach can still be used. In
this direction, we have extended our approach by supporting data
sources without materializing them in relational tables. In this re-
spect, Ontop-spatial now provides support for the system Madis23

(Chronis et al., 2016), an extensible relational database system
built on top of an SQLite wrapper named APSW24. Madis sup-
ports a query language that extends SQL with operators and pro-
vides a Python interface so that users can easily implement user-
defined functions (UDFs). An example is provided below.

Listing 1. MadIS query
select aa as id, onoma as name ,

"POINT(" ||long || " "||lat|| ")" as geo from
(file’http ://bit.ly/2 q8JiR6 ’ header:t)

In the query provided above, a csv dataset is retrieved from the
Web using the file operator of Madis inside a SQL-like query.
In the select clause of the query the WKT format of the geome-
tries is constructed on-the-fly, using the longitude and latitude
columns of the csv file. The ability of processing arbitrary file
formats using extended SQL syntax offered by MadIS and its in-
tegration to Ontop-spatial enables users to create mappings on top
of datasets that are not relational and query the data as RDF us-
ing (Geo)SPARQL. For example, a mapping created for the data
sources described above is given:

mappingId public_schools_gr
target :schools/{id} a :school; :hasName {name} ;

geosparql:asWKT {geo} .
source select aa as id, onoma as name,

"POINT(" ||long || " "||lat|| ")" as geo from
(file’http://bit.ly/2q8JiR6’ header:t) limit 3

The mapping provided above encodes how the results returned
by the MadQL query in the previous example can be mapped in
RDF terms. The WKT representation of the geometries returned
by the MadQL is used to create virtual triples that describe the ge-
ometry extent of features. Using the approach that we described
in Section 4.2 and in (Bereta and Koubarakis, 2016), one would
have to download the .csv file first and then import it to a database
and create mappings similar to the one provided above in order
to use Ontop-spatial and pose GeoSPARQL queries against this
dataset, such as the query described in FIgure 10, which, retrieves
the names nad locations of schools.

Using MadIS as a back-end of Ontop-spatial, it is not necessary
to download the file and import its contents into a materialized
SQL table; When a GeoSPARQL query that involves this dataset
arrives, the data will be fetched, made relational, evaluated and
then returned as RDF on-the-fly, without being materialized in
any intermediate level.

This gives the whole architecture a dynamic nature; Even if the
data source is constantly updated, queries will retrieve the current
version each time automatically.

5. EVALUATION

This section present the set up and the results of the experimental
evaluation that we conducted in order to measure the performance
of the implementation which we presented in Section 4.

In order to evaluate our system, we used a variation of the bench-
mark Geographica(Garbis et al., 2013). Since Geographica was

23https://github.com/madgik/madis
24https://github.com/rogerbinns/apsw
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SELECT ?id ?name ?wkt

WHERE {

?id a :school;

:hasName ?name;

geosparql:asWKT ?wkt .}

Figure 10. GeoSPARQL query

designed to evaluate the most recent advances in the area of
geospatial RDF stores, and since there is no benchmark that spe-
cializes in geospatial OBDA systems, we extended Geographica
in the following two directions: (i) we added more datasets with
more and more complicated (in terms of number of points per ge-
ometry) geometries, and (ii) we extended the software framework
of Geographica so that it also supports the evaluation of OBDA
systems.

5.1 Datasets

Our workload comprises the following datasets:

• The Corine Land Cover dataset (CLC). This dataset is pro-
vided by the European Environmental Agency25. We down-
loaded only the data about Greece. The size of this dataset is
283 MB, it contains 44834 geometries, and each geometries
contains about 187 points on average.

• The “Hotspots” dataset, i.e., a dataset about wildfires of
Greece that was provided to us by the National Observatory
of Athens. The size of this dataset is 35 MB and it contains
37048 geometries consisting of five points each.

• The Global Administrative Geography (GAG) dataset26.
This dataset contains the boundaries (i.e., geometries) of all
administrative divisions. We used only the respective infor-
mation for Greece which is up to 24 MB in size, containing
326 geometries having about 3020 points each.

• Seven OpenStreetMap (OSM) datasets that are available as
Shapefiles, one for each of the following categories: Build-
ings, land use, places, points, railways, roads and water-
ways. The total size of all seven datasets is about 350 MB
and the total number of geometries contained in it is 810365.
Some of these datasets contain only points (e.g., buildings,
places, points), while others contain a little (e.g., railways
with about 13 points per geometry) to more (e.g., waterways
with about 40 points per geometry) complicated geometries.

All datasets provided above are available in Shapefile format. We
imported all shapefiles into a PostGIS database and we connected
this database with Ontop-spatial, after we created the respective
ontology and mappings.

We decided to evaluate our geospatially-enhanced OBDA ap-
proach to the traditional approach, i.e., conversion of all data
into RDF, importing the resulting RDF datasets to a geospatial
triple store and then posing GeoSPARQL queries. We compared
the execution time of GeoSPARQL queries in both Ontop-spatial
and Strabon, which is the state-of-the-art geospatial RDF store,
according to (Garbis et al., 2013). To be able to do so, we materi-
alized the virtual triples that result from Ontop-spatial and stored
them in Strabon, so that the two systems contain exactly the same

25https://www.eea.europa.eu/data-and-maps/data/

clc-2006-vector-4
26http://www.gadm.org/

information. The fact that both Strabon and Ontop-spatial are
able to use PostGIS as back-end DBMS is convenient for our
comparison.

5.2 Evaluation results

We executed a set of spatial selection queries and a set of spa-
tial join queries and we measured the execution times in Ontop-
spatial and Strabon,. In both cases the queries are executed in
cold cache, as we clear the cache before each execution. Figure
11 shows an example of a spatial selection query which was in-
cluded in the benchmark. Using this query we retrieve features
whose geometry overlaps with a geometry which we provide as a
constant. We created variations of this query testing different spa-
tial operators (e.g., sfContains instead of sfOverlaps), adding
more triple patterns, and different geometries as constants (i.g.,
points, lines, polygons). For example, we used both large and
small polygons to produce qeuries of low and high selectivity re-
spectively. An example of a spatial join query can be seen in
Figure 12. Using this query we retrieve features with overlapping
geometries. Notably, in spatial joins both arguments of the spatial
filter functions are variables.

SELECT ?s1 ?o1 where {
?s1 lgd:asWKT ?o1 .

FILTER(geo:sfOverlaps(CONSTANT_GEOM ,?o1))}

Figure 11. Example of a spatial selection query

SELECT ?s1 ?o1 where {
?s1 lgd:asWKT ?o1 .
?s2 lgd:asWKT ?o2 .

FILTER(geo:sfOverlaps (?o1 , ?o2))}

Figure 12. Example of a spatial join query

The results of the evaluation of the spatial selections and spatial
joins can be seen in Figures 13 and Figure 14 respectively. The
results show that Ontop-spatial outperformes Strabon, often by
orders of magnitude. In Spatial joins 6 and 7 shown in Figure 14,
Strabon times out after 40 minutes.

Ontop-spatial achieves better performance than Strabon mainly
because the schema of the database is more natural, i.e., it is
constructed by importing Shapefiles and each Shapefile corre-
sponds to a table in the database. On the other hand, the PostGIS
database in the back-end of Strabon stores triples, and this means
that some more information about the triples (e.g., the vocabu-
lary) is stored in the database. As a result, the database of Stra-
bon is double the size of the database of Ontop-spatial. Moreover,
the database that is produced by Strabon follows the star schema,
i.e., each distinct predicate corresponds to a different database
table and each kind of RDF datatypes are stored in dedicated ta-
bles. So, all geometries of the knowledge base that is stored in
Strabon are stored in a separate table with a geometry column,
and an R-Tree is constructed on that column. On the other hand,
in Ontop-spatial, there is one table per data source having a ge-
ometry column and an R-Tree is constructed for every table with
geometies based on that column. As a result, geometries are par-
titioned in different tables/indices in the case of Ontop-spatial and
in the case of spatial queries only the tables that are involved take
part in the evaluation.

6. CONCLUSIONS

In this paper we presented an apprach for creating semantic vir-
tual geospatial RDF graphs on top of geospatial data with rela-
tional structure enhancing the OBDA paradigm with geospatial
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Figure 13. Spatial Selections

Figure 14. Spatial joins

features, enabling users to perform GeoSPARQL queries on top
of geospatial relational databases. The framework that we pro-
pose can also be applied beyond geospatial databases, to data that
can be logically viewed as relational (e.g., CSV files), and we also
go beyond the OGC standard GeoSPARQL by supporting raster
data as well.

7. FUTURE WORK

As for the future, we want to support GeoSPARQL over more
non-relational data sources, e.g. GeoJSON documents stored
in MongoDB27. We plan to investigate techniques for parallel
geospatial query processing and extend our framework to en-
able distributed GeoSPARQL query processing. We also plan
to develop further optimization approaches, particularly in the
cases where data is not natively stored in geospatial relational
databases, but it is available in tabular format on the Web.
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