1,109 research outputs found

    The Fairness of Tribal Court Juries and Non-Indian Defendants

    Get PDF

    Stellar Chemical Abundances: In Pursuit of the Highest Achievable Precision

    Get PDF
    The achievable level of precision on photospheric abundances of stars is a major limiting factor on investigations of exoplanet host star characteristics, the chemical histories of star clusters, and the evolution of the Milky Way and other galaxies. While model-induced errors can be minimized through the differential analysis of spectrally similar stars, the maximum achievable precision of this technique has been debated. As a test, we derive differential abundances of 19 elements from high-quality asteroid-reflected solar spectra taken using a variety of instruments and conditions. We treat the solar spectra as being from unknown stars and use the resulting differential abundances, which are expected to be zero, as a diagnostic of the error in our measurements. Our results indicate that the relative resolution of the target and reference spectra is a major consideration, with use of different instruments to obtain the two spectra leading to errors up to 0.04 dex. Use of the same instrument at different epochs for the two spectra has a much smaller effect (~0.007 dex). The asteroid used to obtain the solar standard also has a negligible effect (~0.006 dex). Assuming that systematic errors from the stellar model atmospheres have been minimized, as in the case of solar twins, we confirm that differential chemical abundances can be obtained at sub-0.01 dex precision with due care in the observations, data reduction and abundance analysis.Comment: Accepted for publication in ApJ; 13 pages, 6 figures, 7 table

    Pairing symmetry signatures of T1 in superconducting ferromagnets

    Full text link
    We study the nuclear relaxation rate 1/T1 as a function of temperature for a superconducting-ferromagnetic coexistent system using a p-wave triplet model for the superconducting pairing symmetry. This calculation is contrasted with a singlet s-wave one done previously, and we see for the s-wave case that there is a Hebel-Slichter peak, albeit reduced due to the magnetization, and no peak for the p-wave case. We then compare these results to a nuclear relaxation rate experiment on UGe2 to determine the possible pairing symmetry signatures in that material. It is seen that the experimental data is inconclusive to rule out the possibility of s-wave pairing in UGe2UGe_{2}.Comment: 4 pages, 4 figure

    The Solar Twin Planet Search II. A Jupiter twin around a solar twin

    Full text link
    Through our HARPS radial velocity survey for planets around solar twin stars, we have identified a promising Jupiter twin candidate around the star HIP11915. We characterize this Keplerian signal and investigate its potential origins in stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass planet with a 3800-day orbital period and low eccentricity. Although we cannot definitively rule out an activity cycle interpretation, we find that a planet interpretation is more likely based on a joint analysis of RV and activity index data. The challenges of long-period radial velocity signals addressed in this paper are critical for the ongoing discovery of Jupiter-like exoplanets. If planetary in nature, the signal investigated here represents a very close analog to the solar system in terms of both Sun-like host star and Jupiter-like planet.Comment: 8 pages, 5 figures; A&A accepted; typos corrected in this versio

    Physical properties of ferromagnetic-superconducting coexistent system

    Full text link
    We studied the nuclear relaxation rate 1/T1 of a ferromagnetic-superconducting system from the mean field model proposed in Ref.14. This model predicts the existence of a set of gapless excitations in the energy spectrum which will affect the properties studied here, such as the density of states and, hence, 1/T1. The study of the temperature variation of 1/T1(for T<Tc) shows that the usual Hebel-Slichter peak exists, but will be reduced because of the dominant role of the gapless fermions and the background magnetic behavior. We have also presented the temperature dependence of ultrasonic attenuation and the frequency dependence of electromagnetic absorption within this model. We are successful in explaining certain experimental results.Comment: 10 Pages, 9 figute

    Assessing the organic composition and mineralogy of the Tipton member shale of the Green River Formation utilizing petrological analysis

    Get PDF
    The objective of this research is to further investigate the resource potential of the Green River Formation (GRF) oil shales by determining the lithological, mineralogical, and organic properties by using hand sample study, thin section analysis, and various other microscopic techniques. By utilizing petrology, or rock characterization, this project will determine the grain size, mineral composition, porosity, permeability, and the organic materials that compose the rock. Thus, also giving a more accurate representation of the depositional environment in which the rock was deposited. This will be done by using characteristics observed from hand sample study, thin section analysis, and various other microscopic techniques such as reflected light microscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), and ion milling. A successful completion of this project will result in a better understanding of the resource potential within the Green River Formation. It will shed new light on the mineralogy, porosity, and organic matter within the rock. The GRF has not been characterized to the extent and with the technologies that this project proposes. This study will facilitate a new geological perspective of the region which would aid in resource development, environmental protection, and understanding of important episodes of Earth's geologic past

    18 Sco: a solar twin rich in refractory and neutron-capture elements. Implications for chemical tagging

    Get PDF
    We study with unprecedented detail the chemical composition and stellar parameters of the solar twin 18 Sco in a strictly differential sense relative to the Sun. Our study is mainly based on high resolution (R ~ 110 000) high S/N (800-1000) VLT UVES spectra, which allow us to achieve a precision of about 0.005 dex in differential abundances. The effective temperature and surface gravity of 18 Sco are Teff = 5823+/-6 K and log g = 4.45+/-0.02 dex, i.e., 18 Sco is 46+/-6 K hotter than the Sun and log g is 0.01+/-0.02 dex higher. Its metallicity is [Fe/H] = 0.054+/-0.005 dex and its microturbulence velocity is +0.02+/-0.01 km/s higher than solar. Our precise stellar parameters and differential isochrone analysis show that 18 Sco has a mass of 1.04+/-0.02M_Sun and that it is ~1.6 Gyr younger than the Sun. We use precise HARPS radial velocities to search for planets, but none were detected. The chemical abundance pattern of 18 Sco displays a clear trend with condensation temperature, showing thus higher abundances of refractories in 18 Sco than in the Sun. Intriguingly, there are enhancements in the neutron-capture elements relative to the Sun. Despite the small element-to-element abundance differences among nearby n-capture elements (~0.02 dex), we successfully reproduce the r-process pattern in the solar system. This is independent evidence for the universality of the r-process. Our results have important implications for chemical tagging in our Galaxy and nucleosynthesis in general.Comment: ApJ, in pres

    Acoustic attenuation rate in the Fermi-Bose model with a finite-range fermion-fermion interaction

    Full text link
    We study the acoustic attenuation rate in the Fermi-Bose model describing a mixtures of bosonic and fermionic atom gases. We demonstrate the dramatic change of the acoustic attenuation rate as the fermionic component is evolved through the BEC-BCS crossover, in the context of a mean-field model applied to a finite-range fermion-fermion interaction at zero temperature, such as discussed previously by M.M. Parish et al. [Phys. Rev. B 71, 064513 (2005)] and B. Mihaila et al. [Phys. Rev. Lett. 95, 090402 (2005)]. The shape of the acoustic attenuation rate as a function of the boson energy represents a signature for superfluidity in the fermionic component
    • …
    corecore