47 research outputs found

    Universality in Heavy Fermions Revisited

    Full text link
    A previous scaling analysis of pressure experiments in heavy fermion is reviewed and enlarged. We show that the critical exponents obtained from this analysis indicate that a one-parameter scaling describes these experiments. We obtain explicitly the enhancemente factors showing that these systems are indeed near criticality and that the scaling approach is appropriate. The physics responsible for the one-parameter scaling and breakdown of hyperscaling is clarified. We discuss a microsocopic theory that is in agreement with the experiments. The scaling theory is generalized for the case the shift and crossover exponents are different. The exponents governing the physical behavior along the non-Fermi liquid trajectory are obtained for this case.Comment: 7 pages, Latex, 3 Postscript figures, to be published in Physical Review

    Isotope effect in superconductors with coexisting interactions of phonon and nonphonon mechanisms

    Full text link
    We examine the isotope effect of superconductivity in systems with coexisting interactions of phonon and nonphonon mechanisms in addition to the direct Coulomb interaction. The interaction mediated by the spin fluctuations is discussed as an example of the nonphonon interaction. Extended formulas for the transition temperature Tc and the isotope-effect coefficient alpha are derived for cases (a) omega_np omega_D, where omega_np is an effective cutoff frequency of the nonphonon interaction that corresponds to the Debye frequency omega_D in the phonon interaction. In case (a), it is found that the nonphonon interaction does not change the condition for the inverse isotope effect, i.e., mu^* > lambda_ph/2, but it modifies the magnitude of alpha markedly. In particular, it is found that a giant isotope shift occurs when the phonon and nonphonon interactions cancel each other largely. For instance, strong critical spin fluctuations may give rise to the giant isotope effect. In case (b), it is found that the inverse isotope effect occurs only when the nonphonon interaction and the repulsive Coulomb interaction, in total effect, work as repulsive interactions against the superconductivity. We discuss the relevance of the present result to some organic superconductors, such as kappa-(ET)2Cu(NCS)2 and Sr2RuO4 superconductors, in which inverse isotope effects have been observed, and briefly to high-Tc cuprates, in which giant isotope effects have been observed.Comment: 4 pages, 2 figures, (with jpsj2.cls, ver.1.2), v2:linguistic correction

    Coexistence of Singlet and Triplet Attractive Channels in the Pairing Interactions Mediated by Antiferromagnetic Fluctuations

    Full text link
    We propose a phase diagram of quasi-low-dimensional type II superconductors in parallel magnetic fields, when antiferromagnetic fluctuations contribute to the pairing interactions. We point out that pairing interactions mediated by antiferromagnetic fluctuations necessarily include both singlet channels and triplet channels as attractive interactions. Usually, a singlet pairing is favored at zero field, but a triplet pairing occurs at high fields where the singlet pairing is suppressed by the Pauli paramagnetic pair-breaking effect. As a result, the critical field increases divergently at low temperatures. A possible relation to experimental phase diagrams of a quasi-one-dimensional organic superconductor is briefly discussed. We also discuss a possibility that a triplet superconductivity is observed even at zero field.Comment: 4 pages, 1 figure (Latex, revtex.sty, epsf.sty

    Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4

    Full text link
    Low energy polarized electronic Raman scattering of the electron doped superconductor Nd_1.85Ce_0.15CuO_4 (T_c=22 K) has revealed a nonmonotonic d_{x^2-y^2} superconducting order parameter. It has a maximum gap of 4.4 k_BT_c at Fermi surface intersections with antiferromagnetic Brillouin zone (the ``hot spots'') and a smaller gap of 3.3 k_BT_c at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the ``hot spots'' emphasizes role of antiferromagnetic fluctuations and similarity in the origin of superconductivity for electron- and hole-doped cuprates.Comment: 4 pages, 4 figure

    Nonanalytic behavior of the spin susceptibility in clean Fermi systems

    Get PDF
    The wavevector and temperature dependent static spin susceptibility, \chi_s(Q,T), of clean interacting Fermi systems is considered in dimensions 1\leq d \leq 3. We show that at zero temperature \chi_s is a nonanalytic function of |Q|, with the leading nonanalyticity being |Q|^{d-1} for 1<d<3, and Q^2\ln|Q| for d=3. For the homogeneous spin susceptibility we find a nonanalytic temperature dependence T^{d-1} for 1<d<3. We give qualitative mode-mode coupling arguments to that effect, and corroborate these arguments by a perturbative calculation to second order in the electron-electron interaction amplitude. The implications of this, in particular for itinerant ferromagnetism, are discussed. We also point out the relation between our findings and established perturbative results for 1-d systems, as well as for the temperature dependence of \chi_s(Q=0) in d=3.Comment: 12pp., REVTeX, 5 eps figures, final version as publishe

    Phase transition from a dx2−y2d_{x^2-y^2} to dx2−y2+dxyd_{x^2-y^2}+d_{xy} superconductor

    Full text link
    We study the phase transition from a dx2−y2d_{x^2-y^2} to dx2−y2+dxyd_{x^2-y^2}+d_{xy} superconductor using the tight-binding model of two-dimensional cuprates. As the temperature is lowered past the critical temperature TcT_c, first a dx2−y2 d_{x^2-y^2} superconducting phase is created. With further reduction of temperature, the dx2−y2+dxy d_{x^2-y^2}+d_{xy} phase is created at temperature T=Tc1T=T_{c1}. We study the temperature dependencies of the order parameter, specific heat and spin susceptibility in these mixed-angular-momentum states on square lattice and on a lattice with orthorhombic distortion. The above-mentioned phase transitions are identified by two jumps in specific heat at TcT_c and Tc1T_{c1}.Comment: Latex file, 5 pages, 6 postscript figures, Accepted in Physical Review

    Indirect Exchange Interaction between two Quantum Dots in an Aharonov-Bohm Ring

    Get PDF
    We investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two spins located at two quantum dots embedded in an Aharonov-Bohm (AB) ring. In such a system the RKKY interaction, which oscillates as a function of the distance between two local spins, is affected by the flux. For the case of the ferromagnetic RKKY interaction, we find that the amplitude of AB oscillations is enhanced by the Kondo correlations and an additional maximum appears at half flux, where the interaction is switched off. For the case of the antiferromagnetic RKKY interaction, we find that the phase of AB oscillations is shifted by pi, which is attributed to the formation of a singlet state between two spins for the flux value close to integer value of flux.Comment: 10 pages, 5 figure

    Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors

    Get PDF
    The singlet s-, d- and triplet p-wave pairing symmetries in quasi-one-dimensional organic superconductors can be experimentally discriminated by probing the Andreev bound states at the sample edges. These states have the energy in the middle of the superconducting gap and manifest themselves as a zero-bias peak in tunneling conductance into the corresponding edge. Their existence is related to the sign change of the pairing potential around the Fermi surface. We present an exact self-consistent solution of the edge problem showing the presence of the midgap states for p_x-wave superconductivity. The spins of the edge state respond paramagnetically to a magnetic field parallel to the vector d that characterizes triplet pairing.Comment: 6 pages, 4 figures. V.2: New section on spin response is added and references are updated. V.3: Final version accepted to PRB. Typos are corrected and important note is added in proof

    Systematics of two-component superconductivity in YBa2Cu3O6.95YBa_{2}Cu_{3}O_{6.95} from microwave measurements of high quality single crystals

    Full text link
    Systematic microwave surface impedance measurements of YBCO single crystals grown in BaZrO3BaZrO_3 crucibles reveal new properties that are not directly seen in similar measurements of other YBCO samples. Two key observations obtained from complex conductivity are: a new normal conductivity peak at around 80K and additional pairing below 65K. High pressure oxygenation of one of the crystals still yields the same results ruling out any effect of macroscopic segregation of O-deficient regions. A single complex order parameter cannot describe these data, and the results suggest at least two superconducting components. Comparisons with model calculations done for various decoupled two-component scenarios (i.e. s+d, d+d) are presented. Systematics of three single crystals show that the 80K quasiparticle peak is correlated with the normal state inelastic scattering rate. Close to Tc, the data follow a mean-field behavior. Overall, our results strongly suggest the presence of multiple pairing temperature and energy scales in YBa2Cu3O6.95YBa_{2}Cu_{3}O_{6.95}.Comment: 14 pages, 2-column, Revtex, 5 embedded postscript figures, uses graphicx. Postscript version also available at http://sagar.physics.neu.edu/preprints.htm

    Phenomenological description of the microwave surface impedance and complex conductivity of high-TcT_c single crystals

    Full text link
    Measurements of the microwave surface impedance Zs(T)=Rs(T)+iXs(T)Z_s(T)=R_s(T)+iX_s(T) and of the complex conductivity σs(T)\sigma_s(T) of high-quality, high-TcT_c single crystals of YBCO, BSCCO, TBCCO, and TBCO are analyzed. Experimental data of Zs(T)Z_s(T) and σs(T)\sigma_s(T) are compared with calculations based on a modified two-fluid model which includes temperature-dependent quasiparticle scattering and a unique temperature variation of the density of superconducting carriers. We elucidate agreement as well as disagreement of our analysis with the salient features of the experimental data. Existing microscopic models are reviewed which are based on unconventional symmetry types of the order parameter and on novel mechanisms of quasiparticle relaxation.Comment: 15 pages, 17 figures, 1 tabl
    corecore