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We investigate the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two spins lo-
cated at two quantum dots embedded in an Aharonov-Bohm (AB) ring. In such a system the
RKKY interaction, which oscillates as a function of the distance between two local spins, is affected
by the flux. For the case of the ferromagnetic RKKY interaction, we find that the amplitude of
AB oscillations is enhanced by the Kondo correlations and an additional maximum appears at half
flux, where the interaction is switched off. For the case of the antiferromagnetic RKKY interaction,
we find that the phase of AB oscillations is shifted by π, which is attributed to the formation of a
singlet state between two spins for the flux value close to integer value of flux.

PACS numbers: 73.23.-b, 73.23.Hk, 75.20.Hr

I. INTRODUCTION

When two magnetic moments are embedded in a metal,
they induce spin polarization in a conduction electron sea
and couple each other even they are spatially apart. Such
indirect exchange interaction, the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction, has been known
from the 1950s [1]. The indirect exchange interaction
in magnetic nanostructures is one of basic mechanisms
for spintronics [2] and it is well understood for ferro-
magnet and nonmagnetic metal multilayer structures [3].
However for semiconductor nanostructures, the indirect
exchange interaction between local spins formed in two
quantum dots has not yet been observed, in spite of the
importance as a basic physics and the potential applica-
tion for semiconductor nanospintronics.

Recent improvement of the fabrication technique for
semiconductor nanostructures enables one to make rather
complicated structures with possibility of the precise con-
trolling of their parameters. For example, a double quan-
tum dot (QD) system [4] and the composite system of
QD and an Aharonov-Bohm (AB) ring have been made
[5, 6]. The double-dot system was proposed for a can-
didate of the “qubit”, because in the Coulomb blockade
(CB) regime a dot with odd numbers of electrons, be-
haves as a local spin and two dot spins can be entangled
by introducing the exchange interaction between them
[7]. Such exchange interaction has been also discussed
from the point of view of the competition between the
Kondo effect and the antiferromagnetic (AF) interaction
[8]. However the direct exchange interaction was consid-
ered rather than the RKKY interaction. Investigations
on the AB ring embedded with QD are aimed at under-
standing the coherent transport through QD [5, 9, 10]
and the indirect exchange interaction between two local
spins has not been addressed.

So it is intriguing to investigate the RKKY interac-
tion between two QDs in CB regime embedded in AB
ring. We will show that the RKKY interaction, the sign

of which oscillate as a function of the distance (RKKY
oscillations), is affected by the flux and it dominates the
transport properties. For ferromagnetic (F) coupling be-
tween dot spins, the amplitude of AB oscillations is en-
hanced by Kondo correlations and an additional maxi-
mum appears at half flux. For AF coupling case, the
phase of AB oscillations is shifted by π.

II. MODEL AND CALCULATIONS

Figure 1(a) shows the schematic picture of an AB ring
embedded with one QD in each arm. QDs denoted with
1 and 2 weakly couple to left and right leads. The ef-
fective Hamiltonian is written with two single-channel 1-
dimensional (1D) leads Hamiltonian H0 and the tunnel-
ing Hamiltonian HT as H = H0 + HT. The lead Hamil-

tonian is given by H0 =
∑

k r=L,R σ εka†
krσakrσ, where

(b)
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FIG. 1: (a) Aharonov-Bohm ring embedded with one QD
in each arm. The system has the parity symmetry along the
horizontal and vertical axes (dot-dashed lines). (b) The flux
dependent (left panel) and independent (right panel) particle-
hole excitation. Φ is the flux penetrating the ring. The di-
rected solid and dashed lines are the particle and hole propa-
gators, respectively.
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akL(R)σ is an annihilation operator of an electron with
quantum number k and spin σ in the left (right) lead.
For simplicity, we adopt the so-called Coqblin-Schrieffer
model,

HT =
∑

r,r′=L,R
n=1,2

∑

σ,σ′=↑,↓

J

2
a†

rnσXn
σ′ σar′nσ′ , (1)

for the tunneling Hamiltonian through QDs with odd
numbers of electrons in CB regime. The Hubbard op-
erator Xn

σ′ σ = |n, σ′〉〈n, σ| describes the spin state of the
n-th QD and J > 0 is a coupling constant. The an-
nihilation operator arnσ is written using the projection
〈n|kr〉 of wave function of an electron in the lead r with
quantum number k at the boundary of the n-th QD, as
arnσ=

∑

k〈n|kr〉 akrσ [11].
Here we encounter a problem: One needs to know the

proper wave function including the information on the
coherent propagation of an electron through arms. Usu-
ally the scattering theory [12] is suitable for treating the
electron coherency. However it is complicated to com-
bine this theory with a theory based on the Hamiltonian
in the second-quantization representation. In this pa-
per we circumvent this problem. Rather, we utilize an
assumption of parity (mirror) symmetry along the hor-
izontal and the vertical axes (dot-dashed lines in Fig.
1(a)). Namely, the total Hamiltonian is invariant under
the interchange of indices L ↔ R or 1 ↔ 2. Such approx-
imation will make calculations simple and will contain all
important physics. Any deviations from such a symme-
try will change the result only quantitatively.

For practical calculations, it is convenient to introduce
an annihilation operator of even/odd parity states [13]

ar±σ = (ar1σ ±ar2σ)/
√

2, ( ar±σ =
∑

k〈±|k〉 akrσ, where

|±〉= (|1〉±|2〉)/
√

2 ; we dropped the index r from |kr〉
because of the parity symmetry along the vertical axis).
Annihilation operators for even and odd parity states are
orthogonal,

{arpσ, ar′p′σ′} = δrr′δσσ′δpp′ ,

because of the parity symmetry along the horizontal axis.
When magnetic field is applied, an AB phase factor

eiφ/2 (e−iφ/2) must be counted in Eq. (1), when electron
tunnels through a QD in the clockwise(anticlockwise) di-
rection [14]. The AB phase is written with vector poten-

tial ~A as,

φ =
2π

Φ0

∮

~A · d~l, (2)

where Φ0 = hc/e is the flux quantum and the line integral
is performed along the ring in the clockwise direction. An
AB flux breaks the time-reversal symmetry and it gener-
ates the main difference between features of the orthodox
two-impurity Kondo model [13, 15, 16, 17, 18] and the
AB ring embedded with one QD in each arm. Here, we
note that the magnetic field in leads and QDs is not zero

for an experiment and it causes Zeeman splitting of elec-
tron spins. In the following discussions, we consider an
ideal situation where there is no Zeeman splitting and
discuss the effect of AB phase on the indirect exchange
coupling and transport properties.

The Hamiltonian for the RKKY interaction can be ob-
tained by the second order perturbation theory in terms
of J/εF, where εF is the Fermi energy [1, 19]:

HRKKY =
JRKKY(φ)

2

∑

σσ′

X1
σσ′X2

σ′σ . (3)

The coupling constant JRKKY(φ) can be written as

JRKKY(φ) =
J2

2
χ (2 + 2 cosφ), (4)

where a succeptibility function χ can be found by the
perturbation theory based on the Keldysh Green function
technique [19]. In the equilibrium, it can be written as

J2χ =
1

4
Re

∫

dεdε′
γp(ε)γp(ε

′) − γp(ε)γp̄(ε
′)

ε + iη − ε′

×
{

f+(ε) − f+(ε′)
}

, (5)

where η is a positive infinitesimal number and γp(ε) =
J

∑

k〈p|k〉〈k|p〉 δ(ε − εk) is a spectral function of par-
ity p “electron propagator”. The subscript p̄ represents
the opposite parity of p, i.e. p̄ = ± for p = ∓. Here,
f±(ε) = 1/(1 + e±βε) is the electron (hole) Fermi distri-
bution function, and β ≡ T−1(We use the unit kB ≡ 1).
In Eq. (4), a phase dependent factor (2 + 2 cosφ) ap-
pears, which value is related to the four configurations of
particle-hole excitations - two of which enclose the flux
[left panel of Fig. 1(b)] and pick up a phase factor eiφ or
e−iφ and give term 2 cosφ, and the others (right panel)
are independent of the flux - give term 2. The Eq. (4) is
one of the main results of this paper. It shows that by
means of external flux φ one can control the amplitude
of the RKKY interaction but it is impossible to change
its sign since (2 + 2 cosφ) ≥ 0.

Since we consider 1D leads, we approximate γp(ε) as
for the 1D free electron gas with the linearized dispersion
relation [13]:

γ±(ε) ≃ J̄
[

1 ± cos
{

kFl
(

1 +
ε

D

)}]

, (6)

where kF is the Fermi wave number and l is the length
of an electron path between two QDs. The argument of
cosine function is the energy dependent “orbital phase”
[20], i.e. the accumulated phase during electron propaga-
tion between two QDs. We introduced the cut-off energy
D = ~vFkF, where vF is the Fermi velocity. Here, J̄
is written with the density of the states ρ as J̄ ≡ Jρ.
Substituting Eq. (6) into Eqs. (4) and (5), we obtain
for short distance between two QDs (kFl ≪ 2π) the
ferromagnetic coupling as JRKKY(φ) ≃ −2 ln 2 J̄2D (2 +
2 cosφ) and more relevant - the RKKY oscillations of 1D
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free electron gas [1, 21] as a function of l for long distance
between dots (kFl ≫ 2π)

JRKKY(φ) ≃ −πJ̄2D cos(2kFl)

4 kFl
(2 + 2 cosφ). (7)

Above expressions are obtained by replacing the Fermi
functions in Eq. (5) with those at T = 0, what is valid
below the characteristic temperature T ∗ defined by,

T ∗ ≡ ~

τ
, τ ≡ ~kFl

D
=

l

vF
. (8)

Here, τ is the characteristic time scale for an electron
travels between two QDs. It can be understood from
the following argument: Electrons deep inside the Fermi
sea are responsible for the RKKY oscillations. On the
other hand, electrons with energy ε (|ε| ≪ T ∗), i.e. elec-
trons around the Fermi level, are unimportant, because
such electrons contribute only oscillations whose charac-
teristic wave length hvF/T ∗ is much longer than l. Thus
the RKKY oscillations are insensitive to the temperature
in the regime T ≪ T ∗. However, when the temperate
reaches T ∗, the RKKY oscillations are affected by the
thermal excitations of lead electrons and will be smeared
out.

Due to the RKKY interaction, depending on the sign
of the coupling JRKKY(φ) [Eq. (7)], the two dot spins are
entangled and form a singlet state |0, 0〉 for AF coupling
(JRKKY(φ) > 0) or a triplet state |1, m〉 (m = 0,±1) for
F coupling (JRKKY(φ) < 0).

In the following, we will discuss how the flux depen-
dent RKKY interaction modifies transport properties of
the ring. To calculate the conductance, we adopt the
third order perturbation theory in terms of J̄ , in or-
der to take into account the Kondo correlations: They
are pronounced when the temperature decreases and
approaches the order of the Kondo temperature TK ∼
D exp(−1/(2J̄)). In our case, the RKKY interaction be-
comes important at the temperature, where the Kondo
correlations are also unignorable. First we rewrite the
tunnel Hamiltonian, Eq. (1), using the vector operator

of the n-th local spin ~Sn, whose components are defined
as Sn

+/− = Xn
↑↓/↓↑ and Sn

z = (Xn
↑↑ − Xn

↓↓)/2. Further

we introduce operators ~S± = ~S1 ± ~S2, which satisfy the
following commutation relations:

[Sp
i , Sp

j ] = iǫijkS+
k , [Sp

i , Sp̄
j ] = iǫijkS−

k , (9)

where ǫijk is the Levi-Chivita antisymmetric tensor. The

operator ~S+ does not change the total spin-quantum

number, while ~S− is the operator of the singlet-triplet
transition. By using above operators, we obtain the sym-
metrized form of HT [13, 15, 22] taking into account the
AB phase as

HT =
J

4

∑

p=±
σ,σ′=↑,↓

{

∑

r

(

~σp
rr· ~Sp + v a†

rpσ′δσ′σarpσ

)

+cos
φ

2

(

~σp
RL· ~Sp + v a†

Rpσ′δσ′σaLpσ

)

+H.c.

+ i sin
φ

2

(

~σp̄
RL· ~Sp + v a†

Rp̄σ′δσ′σaLpσ

)

+H.c.

}

.

(10)

Here, ~σ
+(−)
r′r =

∑

σσ′p a†
r′pσ′~σσ′σarp(p̄)σ denotes effective

conducting electron spin and is defined with the vector
Pauli matrix ~σ. Terms proportional to v represent po-
tential scattering process and for our case, v = 1. The
first line represents the reflection process and shows that
the change of parity and the singlet-triplet transition oc-
cur simultaneously. The second and the third lines de-
scribe transmission processes. The third line describes
the singlet-triplet transition without changing the par-
ity, that is not invariant under the interchange of indices,
L ↔ R or 1 ↔ 2, (i.e. the replacement of ar±σ with
±ar±σ). Here it does not mean that the parity symme-
try is broken: the space inversion transformation changes
φ → −φ, because it also reverses the direction of the line
integral in Eq. (2).

In order to calculate the linear conductance, we adopt
the diagrammatic technique for the density matrix in the
real-time domain [23, 24]. With the help of the commu-
tation relations, Eq. (9), the perturbative calculation
is performed rather systematically (Appendix. A). The
“partial self-energy” which represents the transition rate
for an electron from the left lead to the right lead accom-
panied by the triplet-triplet transition ΣLR

11 or preserving
a singlet state ΣLR

00 or accompanied by the singlet-triplet
transition ΣLR

jj̄
(j = 0, 1) is obtained as follows:
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ΣLR
11 ≃ 3πi

2

∫

dε
∑

p=±



γ+
pL(ε) γ−

pR(ε)Re







1 +
v2

2
+ σ1 p(ε) +

∑

j=0,1

σ1 p̄(ε − ∆jj̄)

2







cos2
φ

2

+ γ+
pL(ε) γ−

p̄R(ε)Re







1 +
v2

2
+ σ0 p(ε) +

∑

j=0,1

σ0 p̄(ε − ∆jj̄)

2







sin2 φ

2



 ,

(11)

ΣLR
00 ≃ πi

4

∫

dε
∑

p=±

v2

{

γ+
pL(ε) γ−

pR(ε) cos2
φ

2
+ γ+

pL(ε) γ−
p̄R(ε) sin2 φ

2

}

, (12)

ΣLR
jj̄ ≃ 3πi

4

∫

dε
∑

p=±

[

γ+
pL(ε) γ−

p̄R(ε − ∆j̄j)Re
{

1 + σ1 p(ε) + σ1 p̄(ε − ∆j̄j)
}

cos2
φ

2

+ γ+
pL(ε) γ−

pR(ε − ∆j̄j)Re
{

1 + σ0 p(ε) + σ0 p̄(ε − ∆j̄j)
}

sin2 φ

2

]

, (13)

where we neglected the integral Re
∫

dε′γp(ε
′)/(ε + iη −

ε′). The subscript j = 1(0) denotes the total-spin quan-
tum number and j̄ = 0(1). Here ∆10 = −∆01 =
JRKKY(φ) and γ±

pr(ε) = γp(ε)f
±(ε − µr) denotes the

“lesser” or “greater” Green function where µL = −µR =
eV/2. The function σ0(1)p defined by

σ0(1)p(ε) =

∫

dε′
γ+

Lp(ε
′) + γ+

Rp̄(p)(ε
′)

ε + iη − ε′
, (14)

gives the logarithmic divergence related with Kondo cor-
relations. By substituting Eq. (6) to Eq. (14), we obtain

σ0±(ε) ≃ 2J̄ ln
2eγD

πT
,

σ1±(ε) ≃ σ0±(ε) ± 2J̄ Re

[

eikFl

{

ln
2T ∗

πT

+ Ei (−ikFl)

}]

,

for V = 0 and ε ≪ T, T ∗. Here Ei(x) denotes the ex-
ponential integral function and γ ≈ 0.577 is the Euler
constant. Equation (4) supplemented with Eq. (5) and
Eqs. (11), (12) and (13) are main results of this paper.

Using the partial self-energy, Eqs. (11), (12) and (13),
the current can be expressed as

I = − ie

~

∑

j,j′=0,1

Pj

{

ΣLR
j j′ − (L ↔ R)

}

, (15)

where probabilities P0 for a singlet state and P1 for each
of particular triplet states (we consider no Zeeman split-
ting), can be obtained for the linear response from the
Boltzmann distribution as

P0 =
1

1 + 3 exp(−βJRKKY(φ))
, P1 =

1 − P0

3
. (16)

The linear conductance is defined as G = limV →0 ∂I/∂V .

III. RESULTS AND DISCUSSION

For the AB ring geometry without quantum dots in
arm, the conductance oscillates as a function of the flux φ
[12]. Furthermore, because of the orbital phase, the con-
ductance also oscillates as a function of the length of the
arm l for enough low temperatures: As the thermal exci-
tation of lead electrons scrambles various orbital phases,
the oscillatory component would be reduced for temper-
atures above the characteristic temperature T ∗, where
characteristic length hvF/T reaches l. When one local
spin, i.e. QD, is embedded in each arm of the AB ring, in
addition to the oscillatory component, the non-oscillatory
background of oscillations related to spin-flip processes
will appear: Spin-flip processes do not contribute to the
interference effect [25] because if a local spin is flipped,
we can determine the path which an electron propagated.
Such non-oscillatory background reduces the portion of
oscillatory component. However, if we take account of
the RKKY interaction, the oscillatory component can be
enhanced from the following mechanism: First, according
to Eq. (16), the probabilities for singlet P0 and triplet P1

states will be affected by the RKKY coupling constant
JRKKY(φ), which is a oscillatory function in terms of φ
and l. Second, as the conductance would be sensitive to
a state of local spins, it would show also the oscillatory
behavior related to the oscillations of JRKKY(φ). Such
RKKY dominant oscillations one could expect for the
enough low temperature T ≪|JRKKY(0)|≪T ∗.

In the following, we will discuss the properties of our
system for temperatures where the thermal scrambling
of orbital phases is unimportant T ≪ T ∗ and above
the Kondo temperature T ≫ TK. We note that as
|JRKKY(φ)| ≪ T ∗, the modification of orbital phases by
inelastic spin-flip scattering events is also unimportant.
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A. l - dependence

First we will discuss the RKKY oscillations without
magnetic flux φ = 0 as a function of the distance l be-
tween two QDs. Figure 2(a) shows the RKKY oscilla-
tions of the coupling constant JRKKY(0) as a function
of the length of an electron path l. It oscillates with
the period of kF l/π = 1, and shows local minima at
integer values of kFl/π corresponding to ferromagnetic
(F) coupling and local maxima at half-integer values of
kFl/π corresponding to the antiferromagnetic (AF) cou-
pling between the spins. The amplitude of the oscillations
decay with 1/kFl as predicted for RKKY interaction in
quasi 1D geometry [21]. In Figure 2(b), there is a plot
of the probability P0 of the singlet state. At low tem-
perature T . |JRKKY(0)| (the solid line), a singlet state
(triplet state) is formed when value of kFl/π is close to
half-integer (integer). As the temperature increases (the
dashed line for T ∼ |JRKKY(0)| and the dotted line for
T ≫ |JRKKY(0)|) the amplitude of oscillations is sup-
pressed and system approaches uniform distribution be-
tween the singlet and triplet states - P0 = P0 = 1/4.
There are also the oscillations of the conductance [Fig.
2(c)] with the period of kFl/π = 1. In the same way
as in Fig. 2(b), the amplitude of oscillations is sup-
pressed for T ≫ |JRKKY(0)|, what indicates that in
regime T < |JRKKY(0)| the conductance oscillations are
mainly determined by the RKKY interaction. Experi-
mentally, it can be difficult to control the length of arms
keeping other parameters fixed. However, the conduc-
tance oscillations would be possible to observe by chang-
ing the Fermi wave number kF, by controlling the carrier
density of 2D electron gas (2DEG) with an additional
gate.

B. φ - dependence

Though above discussions suggest that the RKKY in-
teraction dominates the length dependent conductance,
it would be more convenient experimentally to measure
the flux dependence. In the following we will discuss the
modification of AB conductance oscillations by the pres-
ence of RKKY interaction.

As we mentioned before by means of external flux φ
one can change the amplitude of the RKKY interaction
but not its sign since (2 + 2 cosφ) ≥ 0. In the particular
experimental situation depending on the length l of the
arm and Fermi wave vector kF the spins can be coupled
ferromagnetically or antiferromagnetically. By means of
flux φ one can control the strength of the interaction
but does not switch between them. For this reason it is
generic to discuss three typical situations, for which we
are able to get analytic results. These three cases are
classified by the value of the RKKY coupling constant:
(i) the uncorrelated local spins case (|JRKKY(φ)| ≪ T ),
(ii) the ferromagnetic coupling case (−JRKKY(φ) ≫ T )
and (iii) the antiferromagnetic coupling (JRKKY(φ)≫T ).

k  l/(2π)F

2 4 6 8

0.1

0.2

0

G
/G

K

0.5

1

P
0

0

0

-4

(b)

(c)

(a)

J 
  
  
  
(0

)/
D

R
K

K
Y

  
4×

−
2   10

FIG. 2: Length dependent (a) RKKY coupling constant, (b)
probability for singlet state and (c) conductance for T/D =
5 × 10−5 (solid line), 10−4 (dashed line) and 10−3 (dotted
line). Parameters are taken as φ = 0 and J̄ = 0.04.

(i) Uncorrelated local spins limit is realize for high tem-
perature |JRKKY(φ)| ≪ T or for the flux φ ≈ π + 2πn
since then, according to Eq. (4), the RKKY interaction
is weak, JRKKY(φ) → 0. In this case (i), the local-spin
state is distributed with equal probability among a sin-
glet state and a triplet state P1 ≈ P0 ≈ 1/4 [see Eq. (16)].
The conductance is expressed as

G

GK
≃ (πJ̄)2

{

v2
(

1 + cosφ cos2 kFl
)

+ 3

(

1 + 4J̄ ln
2eγD

πT

) }

, (17)

where GK = e2/h is the quantum conductance. The first
term, which is proportional to v2 and thus independent
of spin-flip processes, is attributed to the phase coher-
ent component of the cotunneling process. It shows the
ordinary AB oscillations. The second term in Eq. (17),
which is related to spin-flip processes (does not depend
on φ), form the background of AB oscillations. We can
see that with decreasing of temperature the Kondo cor-
relations enhance the background: The second term can
be interpreted as the parallel conductance through two
independent spin-1/2 local moments whose conductance
is enhanced by Kondo correlations [26]. In the third or-
der contribution in J̄ in Eq. (17), there is no interference
related to the orbital phase kFl, which was pointed out
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by Beal-Monod [15]. We explicitly showed by Eq. (17)
that there is also no interference related to the AB phase
in the third order contribution.

(ii) The ferromagnetic coupling for −JRKKY(φ) ≫ T :
In this case, two local spins form a triplet state P1 ≈ 1/3
and P0 ≈ 0 [see Eq. (16)]. Thus, the conductance is that
of S = 1 Kondo model plus the potential scattering. For
the case of long distance between QDs (kFl ≫ 1),

G

GK
≃ 2(πJ̄)2

[

4J̄ cos2 kFl cos2
φ

2
ln

2T ∗

πT

+

(

1 +
v2

2
+ 2J̄ ln

2eγD

πT

)

(

1 + cosφ cos2 kFl
)

]

.

(18)

For the opposite case, kFl ≪ 1, we obtain the same equa-
tion as Eq. (18) with replacing T ∗ in the logarithm by
e−γD. The striking feature is that as opposed to the
case (i), the Kondo correlations enhance the oscillatory
component as it is shown in the second term of Eq. (18).
Loosely speaking, two spins are no longer independent
phase-breaking scatterers because they “observe” each
other and the Kondo correlations enhances the AF cou-
pling of each QD spin to the conducting electrons spins.
The first term of Eq. (18) shows the logarithmic diver-
gence, whose the cutoff energy is equal to the character-
istic temperature of the orbital phase coherence T ∗. This
term appears because the spin-1 moment stretches over l.
Using Eq. (18), we can relate the F coupling of spins by
RKKY interaction [Fig. 2(a)] with the maximum in the
conductance [Fig. 2(c)] around integer values of kFl/π.

(iii) The antiferromagnetic coupling, JRKKY(φ) ≫ T :
In this case two local moments form a singlet state P1≈0
and P0 ≈ 1 [see Eq. (16)]. As the singlet state is decou-
pled form lead electrons, i.e. electrons flowing through
QDs cannot excite local spins to a triplet state, so only
the potential scattering process contributes to the con-
ductance:

G/GK ≃ (πJ̄)2 v2(1 + cosφ cos2 kFl). (19)

Because we consider the Coulomb blockade regime, the
cotunneling current is very small. It is the reason why the
conductance is suppressed around each half integer value
of kFl/π [Fig. 2(c)], where the RKKY coupling is antifer-
romagnetic [Fig. 2(a)]. Here we note that situation (ii)
and (iii) are not realized for the flux φ ≈ π + 2πn since
JRKKY(φ) is small there and the limit (i) is approached.
For |JRKKY(0)| > T by means of the flux φ we can tune
between (ii) and (i), or (iii) and (i) but not between (ii)
and (iii) situations.

For above three cases, we obtained simple analytic re-
sults and clarify that the local-spin state due to RKKY
interaction causes the pronounced effect on the conduc-
tance. Next, we will analyze the conductance of the sys-
tem for the full range of the flux φ and discuss the ad-
ditional structures caused by the flux dependent RKKY
interaction, which can be an evidence of the RKKY in-
teraction in our system. Figures 3(1-a) and (2-a) show
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FIG. 3: Flux dependent RKKY coupling constant ((1-a) and
(2-a)), probability for singlet state((1-b) and (2-b)) and con-
ductance ((1-c) and (2-c)) for J̄ = 0.04. Panels (1-a), (1-b)
and (1-c) correspond to the F coupling case (kFl/(2π) = 5)
and panels (2-a), (2-b) and (2-c) correspond to AF cou-
pling case (kFl/(2π) = 5.25). Flux dependent conductance
for (3) kFl/(2π) = 50 and (4) 50.25. The solid, dashed,
dotted, and dot-dashed lines show the results for T/D =
5 × 10−5, 10−4, 2 × 10−4, and 10−3, respectively.

the RKKY coupling constant JRKKY(φ) as a function of
the flux φ/(2π). The former shows plot for F coupling
case (kFl/π is an integer) and the latter show the plot for
AF coupling case (kFl/π is a half-integer). The panels
(1-b) and (2-b) are the corresponding plots of the prob-
ability for the singlet state for various temperatures and
the panels (1-c) and (2-c) are plots of the conductance.
In the vicinity of zero flux π = 0, electron wave functions
constructively interfere and thus the maximum RKKY
interaction is induced [panels (1-a) and (2-a)]. For F
coupling case, a triplet state is formed, i.e. P0 ∼ 0, at
low temperature [panel (1-b)] and thus the conductance
is enhanced [panel (1-c)] as discussed in (ii). For AF cou-
pling case at low temperature, a singlet is formed [panel
(2-b)] and the conductance is suppressed [panel (2-c)] as
it was discussed in (iii). At half flux, electron wave func-
tions destructively interfere and the RKKY interaction is
switched off [panels (1-a) and (2-a)]. Surprisingly at half
flux we can observed the maximum in the conductance for
both situations F and AF. According to discussion in (i),
this maximum is caused by the term in Eq. (17), which
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does not depend on the flux, and which corresponds to in-
coherent transport thought the two independent spin-1/2
local moments related to Kondo correlations. Especially
for AF coupling case, it leads to the effective phase shift
of AB conductance oscillations by π [panels (2-c)].

In order to compare our results with the limit, where
the RKKY interaction is negligible, we show curves of
AB oscillations for |JRKKY(φ)| ≪ T in panels (3) and
(4). As discussed in (i), the component of the ordinary
AB oscillations is very small. The Kondo correlations
only enhance the background and they do not promote
characteristic structures as the case of the AF or F cou-
pling.

Here we note some features to distinguish experimen-
tally the RKKY dominant oscillations from the ordi-
nary AB oscillations. The first feature is the charac-
teristic temperature below which the oscillations can be
observed: The characteristic temperature of the ordi-
nary AB oscillations T ∗ is higher than that of RKKY
dominant oscillations |JRKKY(0)| by the factor ∼ J̄−2.
One can point out that the RKKY dominant oscilla-
tions is sensitive to the temperature. The second fea-
ture is the temperature dependence of the amplitude of
oscillations: Suppose we decrease the temperature from
enough high temperature T ≫ |JRKKY(0)|, where sin-
glet and triplet probabilities are P1 ≈ P1 ≈ 1/4 and
the conductance is expressed by Eq. (17). As tem-
perature is lowered, singlet and triplet probabilities are
modified as P0 ≈ 1/4 (1 − 3JRKKY(φ)/(4T )) and P1 ≈
1/4 (1 + JRKKY(φ)/(4T )). Therefore, the correction de-
pending on both the orbital phase and the AB phase

δG ≃ −(πJ̄)2
{

3

(

1 + 4J̄ ln
2eγD

πT

)

(2 + cos2 kFl cosφ)

+ 2v2(1 + cos2 kFl cosφ)

}

JRKKY(φ)

4T
,

emerges. It grows as ∝ (lnT )/T ; the logarithmic correc-
tion is related to the Kondo correlations. We expect that
with the help of the Kondo correlations one can distin-
guish the RKKY dominant AB conductance oscillations
from the ordinary AB oscillations.

Here we will note on the Onsager symmetry. For the
two-terminal geometry, it means that the conductance
is an even function of the flux. We can see that the
RKKY coupling constant JRKKY(φ) is an even function
of the flux (Eq. (4)). This property depends only on
the symmetry of the Hamiltonian under the inversion of
time and magnetic field [27] and does not depends on the
assumption of the mirror symmetry.

Finally we discuss on the range of parameters. For a 2
DEG system at an AlAs/GaAs heterostructure, the car-
rier density of which is typically ≈ 3.8× 1015m−2[6], the
Fermi energy and the Fermi wave length are εF ≈ D ≈
14 meV and 2π/kF ≈ 40 nm, respectively. The RKKY
coupling constant JRKKY(0)∼J̄2D/(kFl) should be larger
than the Kondo temperature TK ∼ D exp(−1/(2J̄)),
|JRKKY(0)|≫TK, otherwise, each spin-1/2 local moment

forms Kondo singlet and are screened out and thus the
RKKY interaction is unimportant. In our calculations,
we put J̄ = 0.04 which gives the small Kondo temper-
ature, TK ∼ 3.7 × 10−6D ≪ |JRKKY(0)|. Because we
adopted the perturbation theory, the temperature should
be above the Kondo temperature, T ≫ TK. In order to
obtain the large RKKY interaction JRKKY(0) & T we
put the size of the ring as kFl ≈ 5 × 2π (about 200 nm).

For the case of a small AB ring, the Zeeman split-
ting could become important. In order to reduce the
Zeeman splitting EZ keeping the number of fluxes con-
stant, one could increase the size of the AB ring be-
cause JRKKY(0)/EZ ∼ l. In such a case, the consider-
ation of the Kondo regime T . TK, could be needed
because RKKY interaction was also reduced so the limit
TK & |JRKKY(0)| was approached.

IV. SUMMARY

In conclusion, we have theoretically investigated the
RKKY interaction acting between local spins, i.e. two
QDs with odd numbers of electrons in CB regime, embed-
ded in the AB ring. We assumed the parity symmetry of
the system and such an assumption does not change the
result qualitatively. We calculated the RKKY coupling
constant and the conductance above the Kondo temper-
ature, T ≫ TK. The RKKY coupling constant, the sign
of which oscillates as a function of the distance, also de-
pends on the flux and the distance between two QDs.
When the RKKY interaction is ferromagnetic, two local
spins form a triplet state around zero flux, where the
electron wave constructively interfere, and thus the max-
imum RKKY interaction is induced. As the temperature
decreases, the amplitude of AB oscillations is enhanced
by Kondo correlations, which is the distinctive difference
between the ordinary AB oscillations and those of the
ferromagnetically coupled two local spins. The maxi-
mum was found at half flux where the RKKY interaction
is switched off and the conductance is described by the
parallel conductance of two independent spin-1/2 local
moments whose conductance is enhanced by Kondo cor-
relations. When the RKKY interaction is AF, the phase
of AB oscillations is shifted by π. It is because around
zero flux, where we obtain the maximum AF interaction,
two local spins form a singlet state, which is decoupled
from the lead electrons.
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APPENDIX A: THIRD ORDER PERTURBATION

THEORY

In this Appendix, we present detailed calculations of
the third-order partial self-energy in terms of J̄ on the
basis of the diagrammatic technique in the real-time do-
main [23, 24]. Figure 4 shows the second order diagrams
for the partial self-energy representing the transition pre-
serving the total-spin quantum number j, ΣLR

jj ((a-1),

(a-2) and (a-3)) and the singlet-triplet transition, ΣLR
jj̄

(j = 0, 1) ((b-1) and (b-2)). Green functions of lead
electrons are represented by directed solid lines, which
are also called “reservoir lines”, and solid lines on the
Keldysh contour (two horizontal lines) represents propa-
gators of local spins. Here diagrams (a-1) and (a-3) rep-
resent different processes. For the former case, we must
count factor −1 for the vertex denoted with S+

z when
σ =↓. We omitted diagrams which could be obtained by
applying the mirror rule [28].

Following the rules in Ref. [23], the diagram (a-1) plus
its mirror diagram can be calculated as

ΣLR
jj

(a-1)
=

∑

p=±
−j≤m≤j

iπ

8

∫

dεγ+
pL(ε)γ−

pR(ε) cos2
φ

2

× Re 〈j, m|2S+
z

2|j, m〉. (A1)

The results for the diagrams (a-2) and (a-3), which

we term ΣLR
jj

(a-2)
and ΣLR

jj
(a-3)

, can be obtained from

Eq. (A1) by changing 2S+
z

2
to S+

±S+
∓ and to 2v2, respec-

tively. In the same way, the diagram (b-1) plus its mirror
diagram is calculated as

ΣLR
jj̄

(b-1)
=

∑

p=±
−j≤m≤j

iπ

8

∫

dεγ+
pL(ε)γ−

p̄R(ε − ∆jj̄) cos2
φ

2

× Re 〈j, m|2S−
z

2|j, m〉, (A2)

where ∆jj̄ is the energy difference between the total-spin

quantum number j state and j̄ state. The result for the

diagram (b-2), which we denote by ΣLR
jj̄

(b-2)
, is obtained

from Eq. (A2) by replacing of 2S−
z

2
by S+

±S+
∓ .

The third order diagrams give the vertex correction to
the second order diagrams. Figures 5(a’-1), (a’-2), (b’-1)
and (b’-2) show the correction for the vertex on the upper
branch of diagrams (a-1), (a-2), (b-1) and (b-2) in Fig. 4,
respectively. Except for the topmost two diagrams, we
omitted the lower branch of each diagram, which is ex-
actly the same as for the corresponding diagram in Fig.
4. The left diagrams and the right diagrams show direct
tunneling processes and exchange processes, respectively.
We did not show the correction for the diagram (a-3) be-
cause it is proportional to

∑

−j≤m≤j〈j, m|S+
z |j, m〉 and

thus vanishes. For example, the topmost two diagrams
in Fig. 5 plus their mirror diagrams are calculated by

v

pσR

pσL

v

j,m

j,mS
+
z

pσR

pσL

S
+
z

j,m

j,m j,m

pL

pR

j,m 1

S
+
±

S
+
∓

(a-1) (a-2) (a-3)

−

−

S z
pσL

S z

j,m

j,m

pσR

(b-1) (b-2)

j,m
−
S±

S
−

∓

pL

pR

j,m 1∓

∓

/↓↑

/↓↑

/↓ ↑

/↓ ↑

FIG. 4: The diagrams for the second order partial self-
energy representing the transition preserving total-spin quan-
tum number j, [(a-1), (a-2) and (a-3)] and the singlet-triplet
transition [(b-1) and (b-2)]. Directed lines represent propa-
gators for lead electrons. Thick solid lines on the Keldysh
contour (two horizontal lines) represent propagators for the
local spins.

utilizing the commutation relations Eq. (9) as

ΣLR
jj

(a-1) correction
=

2i

43
Im

∑

r p

∫

dε1dε2dε3

γ+
Lp(ε1)γ

−
Rp(ε3)

ε1 − ε3 + iη
cos2

φ

2

×〈j, m|S+
z

{

γ−
rp(ε2)S+

+S+
−

ε1 − ε2 + iη
−

γ+
rp(ε2)S+

−S+
+

ε2 − ε3 + iη

}

|j, m〉

≃ iπ

8

∑

p

∫

dεγ+
Lp(ε)γ

−
Rp(ε) cos2

φ

2

×Re

{

σ1p(ε)

4
〈j, m|2S+

z
2|j, m〉

}

, (A3)

where σ1p is defined in Eq. (14). Here we counted the
minus sign for a loop with three vertices in the anticlock-
wise direction and we dropped terms except for the renor-
malization of the transmission probability. We checked
that terms which we dropped are canceled out by the
other diagrams than those depicted in Fig. 5, i.e. dia-
grams in which the position of a lower vertex is inbetween
upper two vertices. Further we neglected the integral
Re

∫

dε′γp(ε
′)/(ε + iη − ε′) which is at most ∼J̄ε/D for

k
F
l≪1 or ∼J̄{|ε|/D+1/(k

F
l)} for k

F
l≫1. By adding Eq.

(A1) and Eq. (A3), we obtain Eq. (A1) with replacing

2S+
z

2
by 2(1 + σ1p(ε)/4)S+

z
2
.

Other two diagrams in panel (a’-1) can be calculated in
the same way. In Fig. 5 we omitted diagrams obtained
by reversing direction and indices for spin and lead of
reservoir lines. By calculation of all such diagrams and
adding them to Eq. (A1), we obtain Eq. (A1) with replac-

ing 2S+
z

2
by 2z′jjS

+
z

2
, where the renormalization factor

is given by

z′jj = 1 +
1

2

{

σ1p(ε) +
σ1p̄(ε − ∆j̄j) + σ1p̄(ε − ∆jj̄)

2

}

.
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S
+
∓

S
−

∓

+S
+

S
+
z

−S
+

pR ↓

↑pr

j,m

j,m

j,m−1

pL ↓

−S
+

S
+
z

+S
+

pR ↓

↑pr

j,m

j,m

j,m+1 pL ↓

↑pr

+S
−

−S
−

j,m−1

↑pr

j,m+1+S
−

−S
−

(a'-1)

j,m

j,m∓1 j,m

S
+
∓

S
−

∓

S
+
z

S
+
z

−
S z

−
S z

j,m∓1

(a'-2) pr /↓↑pr /↓↑

pr /↓↑ pr /↓↑

(b'-1) ↑pr ↑pr

↑pr ↑pr

j,m−1

j,m+1j,m−1

j,m+1

−S
+

−S
+

+S
+

+S
+

−S
−

−S
−

+S
−

+S
−

j,mj,m∓1

j,mS
+
∓

S
+
∓

S
−

∓

S
−

∓S
+
z

S
+
z

−
S z

−
S zj,m∓1

(b'-2) pr /↓↑pr /↓↑

pr /↓↑ pr /↓↑

FIG. 5: The third order diagrams: Each four diagrams of
(a’-1), (a’-2), (b’-1) and (b’-2) show corrections for the vertex
on the upper branch of the diagram (a-1), (a-2), (b-1) and
(b-2) in Fig. 4, respectively.

In Fig. 5 we did not show the lower vertex corrections,
which are given in the same way as the upper vertex
corrections. By counting lower vertex corrections, z′jj is
modified as

zjj = 1 + σ1p(ε) +
σ1p̄(ε − ∆j̄j) + σ1p̄(ε − ∆jj̄)

2
. (A4)

Finally, the third order contributions change ΣLR
jj

(a-1)
to

ΣLR
jj

(a-1)(2)
, where the latter is obtained from the for-

mer by replacing 2S+
z

2
with 2zjjS

+
z

2
. For the other

diagrams than those of panel (a’-1), we can repeat the
same discussions as above. The result for diagrams (a-2)
and (a’-2) and their derivative diagrams, which we term

ΣLR
jj

(a-2)(2)
, is obtained from Eq. (A1) by replacing 2S+

z
2

with zjjS
+
±S+

∓ .

By calculating diagrams in (b’-1) and their derivative
diagrams, and adding them to the diagram (b-1), we ob-

tain ΣLR
jj̄

(b-1)(2)
, which is the same expression as Eq. (A2)

with replacing 2S−
z

2
by 2zjj̄S

−
z

2
. Here

zjj̄ = 1 + σ1p(ε) + σ1p̄(ε − ∆j̄j). (A5)
The result for the diagrams (b-2) and (b’-2) and their

derivative diagrams, which we term ΣLR
jj̄

(b-2)(2)
is ob-

tained from Eq. (A2) by replacing 2S−
z

2
with zjj̄S

−
±S−

∓ .

Finally, by summarizing ΣLR
jj

(a-1)(2)
, ΣLR

jj
(a-2)(2)

and

ΣLR
jj

(a-3)
, we obtain the first term of Eq. (11) for j = 1

and the first term of Eq. (12) for j = 0. By adding

ΣLR
jj̄

(b-1)(2)
to ΣLR

jj̄

(b-2)(2)
, we obtain the first term of Eq.

(13).

For now, we have explained only the diagrams related
to the time-reversal symmetric term, corresponding to
the first and second lines in Eq. (10). Diagrams related
to the time-reversal symmetry breaking term, the third
line in Eq. (10), are obtained from Figs. 4 and 5 by
changing the parity indices of the right reservoir lines.
For example, the corresponding diagram of (a-1) is cal-
culated as

ΣLR
jj

(̃a-1)
=

∑

p=±
m=±1,0

iπ

8

∫

dεγ+
pL(ε)γ−

p̄R(ε) sin2 φ

2

× Re 〈j, m|2S+
z

2|j, m〉.

For vertex corrections, the change in the parity indices
of the right reservoir lines corresponds to the operation
of the replacement of σ1 p by σ0 p. Thus the second terms
of Eqs. (11), (12) and (13) can be obtained from first
terms by replacing σ1 p, cos2(φ/2) and γ−

p(p̄)R with σ0 p,

sin2(φ/2) and γ−
p̄(p)R, respectively.
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