A previous scaling analysis of pressure experiments in heavy fermion is
reviewed and enlarged. We show that the critical exponents obtained from this
analysis indicate that a one-parameter scaling describes these experiments. We
obtain explicitly the enhancemente factors showing that these systems are
indeed near criticality and that the scaling approach is appropriate. The
physics responsible for the one-parameter scaling and breakdown of hyperscaling
is clarified. We discuss a microsocopic theory that is in agreement with the
experiments. The scaling theory is generalized for the case the shift and
crossover exponents are different. The exponents governing the physical
behavior along the non-Fermi liquid trajectory are obtained for this case.Comment: 7 pages, Latex, 3 Postscript figures, to be published in Physical
Review