81 research outputs found

    RECONSTRUCTING THE LATE MIOCENE PALEOENVIRONMENT OF NORTHWESTERN ARGENTINA: NEW SEDIMENTOLOGICAL AND FAUNISTIC EVIDENCE FROM THE PALO PINTADO FORMATION

    Get PDF
    The sedimentological characteristics and fossil vertebrates studies are notoriously increasing in the earth sciences field, as a way to infer reliable information about the biota and the paleoenvironmental and paleoclimatic context. In this framework, we establish relationships among the flora, fauna and the depositional environment during the Late Miocene in Northwestern Argentina. The sedimentology features are described in detail from sediments collected in the Quebrada Salta section, and the Xenarthra Cingulata Kraglievichia paranensis (Pampatheriidae) and Cranithlastus xibiensis (Glyptodontidae) are recorded for the first time in the Palo Pintado Formation (Salta Province, Argentina). The sedimentary observations support the presence of a sinuous sandy-gravel fluvial system with swamps and lacustrine, under a wet tropical climate. In this environment, the vertebrates here described would have inhabited open zones close to these freshwater bodies, predominated by xeric vegetation, mainly represented by grasses and sedges with scarce arboreous elements

    Probing the Pore Drug Binding Site of Microtubules with Fluorescent Taxanes: Evidence of Two Binding Poses

    Get PDF
    The pore site in microtubules has been studied with the use of Hexaflutax, a fluorescent probe derived from paclitaxel. The compound is active in cells with similar effects to paclitaxel, indicating that the pore may be a target to microtubule stabilizing agents. While other taxanes bind microtubules in a monophasic way, thus indicating a single type of sites, Hexaflutax association is biphasic. Analysis of the phases indicates that two different binding sites are detected, reflecting two different modes of binding, which could arise from different arrangements of the taxane or fluorescein moieties in the pore. Association of the 4-4-20 antifluorescein monoclonal antibody-Hexaflutax complex to microtubules remains biphasic, thus indicating that the two phases observed arise from two different poses of the taxane moiety.This work was supported in part by grant BIO2007-61336 from the Ministry of Science and Innovation to J.F.D., BIPPED-CM from Comunidad de Madrid to J.F.D. and J.M.A., and grant MOST No. 2006DFA31490 to W.S.F

    Structural Determinants of the Dictyostatin Chemotype for Tubulin Binding Affinity and Antitumor Activity Against Taxane- and Epothilone-Resistant Cancer Cells

    Get PDF
    A combined biochemical, structural, and cell biology characterization of dictyostatin is described, which enables an improved understanding of the structural determinants responsible for the high-affinity binding of this anticancer agent to the taxane site in microtubules (MTs). The study reveals that this macrolide is highly optimized for MT binding and that only a few of the structural modifications featured in a library of synthetic analogues resulted in small gains in binding affinity. The high efficiency of the dictyostatin chemotype in overcoming various kinds of clinically relevant resistance mechanisms highlights its potential for therapeutic development for the treatment of drug-resistant tumors. A structural explanation is advanced to account for the synergy observed between dictyostatin and taxanes on the basis of their differential effects on the MT lattice. The X-ray crystal structure of a tubulin−dictyostatin complex and additional molecular modeling have allowed the rationalization of the structure−activity relationships for a set of synthetic dictyostatin analogues, including the highly active hybrid 12 with discodermolide. Altogether, the work reported here is anticipated to facilitate the improved design and synthesis of more efficacious dictyostatin analogues and hybrids with other MT-stabilizing agents.We thank Peter T. Northcote for peloruside A, W.-S. Fang for Flutax-2, K. H. Altmann for epothilone D, Dr. Paraskevi Giannakakou (Weill Cornell Medical Center, New York) for the 1A9, PTX10, PTX22, and A8 cell lines, and Prof. Richard Ludueñ a (University of Texas) for the HeLa βIII-transfected cells. We thank Matadero INCOVA (Segovia) for the calf brains for tubulin purification. This work was supported in part by grants BIO2013-42984-R (J.F.D.) and SAF2012-39760-C02-02 (F.G.) from Ministerio de Economia y Competitividad, grant S2010/ ́ BMD-2457 BIPEDD2 from Comunidad Autonoma de Madrid ́ (F.G. and J.F.D.), and the Swiss National Science Foundation grants 310030B_138659 and 31003A_166608 (M.O.S.). The authors acknowledge networking contribution by the COST Action CM1407 “Challenging organic syntheses inspired by naturefrom natural products chemistry to drug discovery” and the COST action CM1470. I.P. thanks the EPSRC and AstraZeneca for funding, Dr. John Leonard (AstraZeneca) for useful discussions, Dr. Stuart Mickel (Novartis) for the provision of chemicals, and the EPSRC UK National Mass Spectrometry Facility at Swansea University for mass spectra

    Necessary and sufficient conditions for AR vector processes to be stationary: Applications in information theory and in statistical signal processing

    Get PDF
    As the correlation matrices of stationary vector processes are block Toeplitz, autoregressive (AR) vector processes are non-stationary. However, in the literature, an AR vector process of finite order is said to be stationary if it satisfies the so-called stationarity condition (i.e., if the spectral radius of the associated companion matrix is less than one). Since the term stationary is used for such an AR vector process, its correlation matrices should somehow approach the correlation matrices of a stationary vector process, but the meaning of somehow approach has not been mathematically established in the literature. In the present paper we give necessary and sufficient conditions for AR vector processes to be stationary. These conditions show in which sense the correlation matrices of an AR stationary vector process asymptotically behave like block Toeplitz matrices. Applications in information theory and in statistical signal processing of these necessary and sufficient conditions are also given

    Structural Determinants of the Dictyostatin Chemotype for Tubulin Binding Affinity and Antitumor Activity Against Taxane- and Epothilone-Resistant Cancer Cells

    Get PDF
    A combined biochemical, structural, and cell biology characterization of dictyostatin is described, which enables an improved understanding of the structural determinants responsible for the high-affinity binding of this anticancer agent to the taxane site in microtubules (MTs). The study reveals that this macrolide is highly optimized for MT binding and that only a few of the structural modifications featured in a library of synthetic analogues resulted in small gains in binding affinity. The high efficiency of the dictyostatin chemotype in overcoming various kinds of clinically relevant resistance mechanisms highlights its potential for therapeutic development for the treatment of drug-resistant tumors. A structural explanation is advanced to account for the synergy observed between dictyostatin and taxanes on the basis of their differential effects on the MT lattice. The X-ray crystal structure of a tubulin−dictyostatin complex and additional molecular modeling have allowed the rationalization of the structure−activity relationships for a set of synthetic dictyostatin analogues, including the highly active hybrid 12 with discodermolide. Altogether, the work reported here is anticipated to facilitate the improved design and synthesis of more efficacious dictyostatin analogues and hybrids with other MT-stabilizing agents.We thank Peter T. Northcote for peloruside A, W.-S. Fang for Flutax-2, K. H. Altmann for epothilone D, Dr. Paraskevi Giannakakou (Weill Cornell Medical Center, New York) for the 1A9, PTX10, PTX22, and A8 cell lines, and Prof. Richard Ludueñ a (University of Texas) for the HeLa βIII-transfected cells. We thank Matadero INCOVA (Segovia) for the calf brains for tubulin purification. This work was supported in part by grants BIO2013-42984-R (J.F.D.) and SAF2012-39760-C02-02 (F.G.) from Ministerio de Economia y Competitividad, grant S2010/ ́ BMD-2457 BIPEDD2 from Comunidad Autonoma de Madrid ́ (F.G. and J.F.D.), and the Swiss National Science Foundation grants 310030B_138659 and 31003A_166608 (M.O.S.). The authors acknowledge networking contribution by the COST Action CM1407 “Challenging organic syntheses inspired by naturefrom natural products chemistry to drug discovery” and the COST action CM1470. I.P. thanks the EPSRC and AstraZeneca for funding, Dr. John Leonard (AstraZeneca) for useful discussions, Dr. Stuart Mickel (Novartis) for the provision of chemicals, and the EPSRC UK National Mass Spectrometry Facility at Swansea University for mass spectra

    PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors

    Get PDF
    PM060184 belongs to a new family of tubulin-binding agents originally isolated from the marine sponge Lithoplocamia lithistoides. This compound is currently produced by total synthesis and is under evaluation in clinical studies in patients with advanced cancer diseases. It was recently published that PM060184 presents the highest known affinities among tubulin-binding agents, and that it targets tubulin dimers at a new binding site. Here, we show that PM060184 has a potent antitumor activity in a panel of different tumor xenograft models. Moreover, PM060184 is able to overcome P-gp mediated resistance in vivo, an effect that could be related to its high binding affinity for tubulin. To gain insight into the mechanism responsible of the observed antitumor activity, we have characterized its molecular and cellular effects. We have observed that PM060184 is an inhibitor of tubulin polymerization that reduces microtubule dynamicity in cells by 59%. Interestingly, PM060184 suppresses microtubule shortening and growing at a similar extent. This action affects cells in interphase and mitosis. In the first case, the compound induces a disorganization and fragmentation of the microtubule network and the inhibition of cell migration. In the second case, it induces the appearance of multipolar mitosis and lagging chromosomes at the metaphase plate. These effects correlate with prometaphase arrest and induction of caspase-dependent apoptosis or appearance of cells in a multinucleated interphase-like state unrelated to classical apoptosis pathways. Taken together, these results indicate that PM060184 represents a new tubulin binding agent with promising potential as an anticancer agent.This work was supported by grants BIO2010-16351 (JFD), CAM S2010/BMD-2457 (JFD), CAM S2010/BMD-2353 (JMA), BFU2011-23416 (JMA) and PharmaMar-CSIC contracts. BP had a contract from Comunidad de Madrid

    New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism

    Get PDF
    We have investigated the target and mechanism of action of a new family of cytotoxic small molecules of marine origin. PM050489 and its dechlorinated analogue PM060184 inhibit the growth of relevant cancer cell lines at subnanomolar concentrations. We found that they are highly potent microtubule inhibitors that impair mitosis with a distinct molecular mechanism. They bind with nanomolar affinity to unassembled αβ-tubulin dimers, and PM050489 binding is inhibited by known Vinca domain ligands. NMR TR-NOESY data indicated that a hydroxyl-containing analogue, PM060327, binds in an extended conformation, and STD results define its binding epitopes. Distinctly from vinblastine, these ligands only weakly induce tubulin self-association, in a manner more reminiscent of isohomohalichondrin B than of eribulin. PM050489, possibly acting like a hinge at the association interface between tubulin heterodimers, reshapes Mg2+-induced 42 S tubulin double rings into smaller 19 S single rings made of 7 ± 1 αβ-tubulin dimers. PM060184-resistant mutants of Aspergillus nidulans map to β-tubulin Asn100, suggesting a new binding site different from that of vinblastine at the associating β-tubulin end. Inhibition of assembly dynamics by a few ligand molecules at the microtubule plus end would explain the antitumor activity of these compounds, of which PM060184 is undergoing clinical trials.We wish to thank J. M. Fernandez Sousa (PharmaMar) for useful discussions and support, E. Hamel (NCI) for providing eribulin, C. Scazzocchio and G. Diallinas for useful advice on mutant screening, H. N. Arst for advice on mutant screening and mapping and for kindly providing strains MAD3688 and MAD4655, T. J. Fitzgerald (A&M University) for MTC and C. Alfonso (CIB) for AUC analysis. We also thank Rhône Poulenc Rorer Aventis for supplying docetaxel and Matadero Municipal Vicente de Lucas de Segovia for providing the calf brains for tubulin purification. B.P. had a contract from Comunidad de Madrid, and A.C. had a Ramon y Cajal contract, J.R.-S. had a fellowship from “Programa de Cooperación Científica entre el Ministerio de Ciencia, Tecnologías y Medio Ambiente de la República de Cuba (CITMA) y el CSIC”. This work was supported by grants BIO2010-16351 (J.F.D.), BQU2009-08536 (J.J.-B.), CAM S2010/BMD-2457 (J.F.D.), CAM S2010/BMD-2353 (J.J.-B., J.M.A.), IPT-2011-0752-900000 and BIO2012-30965 (M.A.P.), BFU2011-23416 (J.M.A.) and PharmaMar-CSIC contracts

    Structural Determinants of the Dictyostatin Chemotype for Tubulin Binding Affinity and Antitumor Activity Against Taxane- and Epothilone-Resistant Cancer Cells

    Get PDF
    13 p.-5 fig.-2 tab.-1 graph.abst.A combined biochemical, structural, and cell biology characterization of dictyostatin is described, which enables an improved understanding of the structural determinants responsible for the high-affinity binding of this anticancer agent to the taxane site in microtubules (MTs). The study reveals that this macrolide is highly optimized for MT binding and that only a few of the structural modifications featured in a library of synthetic analogues resulted in small gains in binding affinity. The high efficiency of the dictyostatin chemotype in overcoming various kinds of clinically relevant resistance mechanisms highlights its potential for therapeutic development for the treatment of drug-resistant tumors. A structural explanation is advanced to account for the synergy observed between dictyostatin and taxanes on the basis of their differential effects on the MT lattice. The X-ray crystal structure of a tubulin–dictyostatin complex and additional molecular modeling have allowed the rationalization of the structure–activity relationships for a set of synthetic dictyostatin analogues, including the highly active hybrid 12 with discodermolide. Altogether, the work reported here is anticipated to facilitate the improved design and synthesis of more efficacious dictyostatin analogues and hybrids with other MT-stabilizing agents.This work was supported in part by grants BIO2013-42984-R (J.F.D.) and SAF2012-39760-C02-02 (F.G.) from Ministerio de Economía y Competitividad, grant S2010/BMD-2457 BIPEDD2 from Comunidad Autónoma de Madrid (F.G. and J.F.D.), and the Swiss National Science Foundation grants 310030B_138659 and 31003A_166608 (M.O.S.). The authors acknowledge networking contribution by the COST Action CM1407 “Challenging organic syntheses inspired by nature—from natural products chemistry to drug discovery” and the COST action CM1470. I.P. thanks the EPSRC and AstraZeneca for funding, Dr. John Leonard (AstraZeneca) for useful discussions, Dr. Stuart Mickel (Novartis) for the provision of chemicals, and the EPSRC UK National Mass Spectrometry Facility at Swansea University for mass spectra

    Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents

    Get PDF
    Microtubule-targeting agents (MTAs) are a class of clinically successful anti-cancer drugs. The emergence of multidrug resistance to MTAs imposes the need for developing new MTAs endowed with diverse mechanistic properties. Benzoxazepines were recently identified as a novel class of MTAs. These anticancer agents were thoroughly characterized for their antitumor activity, although, their exact mechanism of action remained elusive. Combining chemical, biochemical, cellular, bioinformatics and structural efforts we developed improved pyrrolonaphthoxazepines antitumor agents and their mode of action at the molecular level was elucidated. Compound 6j, one of the most potent analogues, was confirmed by X-ray as a colchicine-site MTA. A comprehensive structural investigation was performed for a complete elucidation of the structure-activity relationships. Selected pyrrolonaphthoxazepines were evaluated for their effects on cell cycle, apoptosis and differentiation in a variety of cancer cells, including multidrug resistant cell lines. Our results define compound 6j as a potentially useful optimized hit for the development of effective compounds for treating drug-resistant tumors.This work was supported in part by a grant from the Swiss National Science Foundation (31003A_166608; to M.O.S), grant BFU2016-75319-R (AEI/FEDER, EU) from Ministerio de Economia y Competitividad, Blueprint 282510, AIRC-17217. The authors acknowledge networking contribution by the COST Action CM1407 “Challenging organic syntheses inspired by nature - from natural products chemistry to drug discovery” (to M.O.S. and J.F.D.) and the COST Action EPICHEMBIO CM-1406 (to L.A. and G.C.). This work has also received partial funding from the European Union’s Horizon 2020 (EU) research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721906. Finally, this work was partially funded by MIUR-PRIN project n. 2015Y3C5KP (to L.M.)
    corecore