493 research outputs found

    An empirical analysis of smart contracts: platforms, applications, and design patterns

    Full text link
    Smart contracts are computer programs that can be consistently executed by a network of mutually distrusting nodes, without the arbitration of a trusted authority. Because of their resilience to tampering, smart contracts are appealing in many scenarios, especially in those which require transfers of money to respect certain agreed rules (like in financial services and in games). Over the last few years many platforms for smart contracts have been proposed, and some of them have been actually implemented and used. We study how the notion of smart contract is interpreted in some of these platforms. Focussing on the two most widespread ones, Bitcoin and Ethereum, we quantify the usage of smart contracts in relation to their application domain. We also analyse the most common programming patterns in Ethereum, where the source code of smart contracts is available.Comment: WTSC 201

    Renegotiation and recursion in Bitcoin contracts

    Full text link
    BitML is a process calculus to express smart contracts that can be run on Bitcoin. One of its current limitations is that, once a contract has been stipulated, the participants cannot renegotiate its terms: this prevents expressing common financial contracts, where funds have to be added by participants at run-time. In this paper, we extend BitML with a new primitive for contract renegotiation. At the same time, the new primitive can be used to write recursive contracts, which was not possible in the original BitML. We show that, despite the increased expressiveness, it is still possible to execute BitML on standard Bitcoin, preserving the security guarantees of BitML.Comment: Full version of the paper presented at COORDINATION 202

    Inhibition of poly(ADP-ribose) polymerase-1 attenuates the toxicity of carbon tetrachloride

    Get PDF
    Carbon tetrachloride (CCl4) is routinely used as a model compound for eliciting centrilobular hepatotoxicity. It can be bioactivated to the trichloromethyl radical, which causes extensive lipid peroxidation and ultimately cell death by necrosis. Overactivation of poly(ADP-ribose) polymerase-1 (PARP-1) can rapidly reduce the levels of (β-nicotinamide adenine dinucleotide and adenosine triphosphate and ultimately promote necrosis. The aim of this study was to determine whether inhibition of PARP-1 could decrease CCl4-induced hepatotoxicity, as measured by degree of poly(ADP-ribosyl)ation, serum levels of lactate dehydrogenase (LDH), lipid peroxidation,and oxidative DNA damage. For this purpose, male ICR mice were administered intraperitoneally a hepatotoxic dose of CCl4 with or without 6(5H)-phenanthridinone, a potent inhibitor of PARP-1. Animals treated with CCl4 exhibited extensive poly(ADP-ribosyl)ation in centrilobular hepatocytes, elevated serum levels of LDH, and increased lipid peroxidation. In contrast, animals treated concomitantly with CCl4 and 6(5H)-phenanthridinone showed significantly lower levels of poly(ADP-ribosyl) ation, serum LDH, and lipid peroxidation. No changes were observed in the levels of oxidative DNA damage regardless of treatment. These results demonstrated that the hepatotoxicity of CCl4is dependent on the overactivation of PARP-1 and that inhibition of this enzyme attenuates the hepatotoxicity of CCl4

    Increased epitope complexity correlated with antibody affinity maturation and a novel binding mode revealed by structures of rabbit antibodies against the third variable loop (V3) of HIV-1 gp120.

    Get PDF
    The V3 loop of HIV-1 gp120 is an immunodominant region targeted by neutralizing antibodies (nAbs). Despite limited breadth, better characterization of the structural details of the interactions between these nAbs and their target epitopes would enhance our understanding of the mechanism of neutralization and facilitate designing better immunogens to induce nAbs with greater breadth. Recently, we isolated two anti-V3 neutralizing monoclonal antibodies (mAbs), 10A3 and 10A37, from a rabbit immunized with gp120 of the M group consensus sequence. In this study, crystal structures of these mAbs bound to target epitopes were determined. 10A3 binds to the V3 crown (303TRKSIHIGPGRAF317), using the cradle binding mode similar to human V3 mAbs encoded by IGHV5-51 germline genes and its epitope structure resembles that bound to the human antibodies. In contrast, 10A37, which exhibits greater breadth and potency than 10A3, binds the V3 crown and the succeeding stem region (308HIGPGRAFYTTGEI323). Unexpectedly, the 315RAFYTT320 portion of the epitope existed as helical turns, a V3 structure that has not been observed previously. Its main chain-dominated antigen-antibody interactions not only explain the broad neutralization of 10A37 but also show that its epitope is a potential vaccine target to be further evaluated. In conclusion, our study provides novel insights about neutralization-susceptible epitope structures of the V3 loop of HIV-1 gp120 and demonstrates that, despite low amino acid sequence similarity from human antibody germline genes, rabbits can serve as a useful animal model to evaluate human vaccine candidates. IMPORTANCE The apex crown of the third variable loop (V3) of HIV-1 gp120 is the most immunogenic region of the surface glycoprotein and many mAbs targeting this region have been developed. Structural understanding of V3 crown mAbs not only can help understand how antibody responses targeting this unique region, but also contribute to immunogen design for vaccine development. We present here crystal structures of two neutralizing V3 mAbs, 10A3 and 10A37, developed from rabbits immunized with gp120. Our analysis of 10A3 in complex with V3 provided a detailed example of how epitope complexity can evolve with affinity maturation, while that of 10A37 revealed a novel V3 binding mode targeting the C-terminal side of V3 crown and showed that this region can form a helical structure. Our study provides novel insights about neutralization-susceptible V3 epitope structures and demonstrates that rabbits can serve as a useful animal model to evaluate human vaccine candidates

    Outcome of Endometrial Cancer Stage IIIA with Adnexa or Serosal Involvement Only

    Get PDF
    Objective. The aim of this study is to look at possible differences in outcome between serosa and adnexal involvement stage IIIA endometrial carcinoma. Methods. 67 patients with stage IIIA endometrial carcinoma were included, 46 with adnexal involvement and 21 with serosa. A central histopathological review was performed. Results. The 7-year locoregional failure rate was (LRFR) 2.2% for adnexal involvement and 16.0% for involvement of the serosa (P = .0522). The 7-year distant metastasis-free survival was 72.7% for adnexal involvement and 58.7% for serosa (P = .3994). The 7-year disease-specific survival (DSS) was 71.8% for patients with adnexal involvement and 75.4% for patients with serosa. Conclusion. Endometrial carcinoma stage IIIA with involvement of the adnexa or serosa showed to have a comparable disease-specific survival. Locoregional control was worse for serosa involvement compared to adnexa

    Automated causal inference in application to randomized controlled clinical trials

    Get PDF
    Randomized controlled trials (RCTs) are considered the gold standard for testing causal hypotheses in the clinical domain; however, the investigation of prognostic variables of patient outcome in a hypothesized cause–effect route is not feasible using standard statistical methods. Here we propose a new automated causal inference method (AutoCI) built on the invariant causal prediction (ICP) framework for the causal reinterpretation of clinical trial data. Compared with existing methods, we show that the proposed AutoCI allows one to clearly determine the causal variables of two real-world RCTs of patients with endometrial cancer with mature outcome and extensive clinicopathological and molecular data. This is achieved via suppressing the causal probability of non-causal variables by a wide margin. In ablation studies, we further demonstrate that the assignment of causal probabilities by AutoCI remains consistent in the presence of confounders. In conclusion, these results confirm the robustness and feasibility of AutoCI for future applications in real-world clinical analysis
    corecore