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Abstract: The southern coast of the Caspian Sea in northern Iran is bordered by a mountain 

range with forested catchments which are susceptible to droughts and floods. This 

paper examines possible changes to runoff patterns from one of these catchments in 

response to climate change scenarios. The HEC-HMS rainfall-runoff model was 

used with downscaled future rainfall and temperature data from 13 Global 

Circulation Models, and meteorological and hydrometric data from the Casilian (or 

‘Kassilian’) Catchment. Annual and seasonal predictions of runoff change for three 

future emissions scenarios were obtained, which suggest significantly higher spring 

rainfall with increased risk of flooding and significantly lower summer rainfall 

leading to a higher probability of droughts. “Flash floods” arising from extreme 

rainfall may become more frequent, occurring at any time of year. These findings 

indicate a need for strategic planning of water resource management and mitigation 

measures for increasing flood hazards. 
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Prediction of climate change effects on the runoff regime of a forested catchment in northern 

Iran 

 

Abstract 
 

The southern coast of the Caspian Sea in northern Iran is bordered by a mountain range with 

forested catchments which are susceptible to droughts and floods. This paper examines possible 

changes to runoff patterns from one of these catchments in response to climate change scenarios. 

The HEC-HMS rainfall-runoff model was used with downscaled future rainfall and temperature 

data from 13 Global Circulation Models, and meteorological and hydrometric data from the 

Casilian (or ‘Kassilian’) Catchment. Annual and seasonal predictions of runoff change for three 

future emissions scenarios were obtained, which suggest significantly higher spring rainfall with 

increased risk of flooding and significantly lower summer rainfall leading to a higher probability of 

droughts. “Flash floods” arising from extreme rainfall may become more frequent, occurring at any 

time of year. These findings indicate a need for strategic planning of water resource management 

and mitigation measures for increasing flood hazards. 

 

Key words:  northern Iran, climate change, runoff modelling, weather generator, rainfall patterns 

 

 

1 INTRODUCTION 

 

There is increasing consensus from different GCMs that as the atmosphere continues to warm, 

rainfall intensity is likely to increase over many parts of the world with longer periods of very low 

rainfall in between and that increases in rainfall extremes are expected to be greater than the 

changes in mean precipitation (Easterling et al. 2000, Wilby and Wigley 2002, SWCS 2003, Kharin 

and Zwiers 2005, IPCC 2007). The mean air temperature near the surface of the earth increased by 

up to 0.35°C from the 1910s to the 1940s and by as much as 0.55°C from the 1970s to 2007 (IPCC 

2007). For every 1°C increase in temperature, the water-holding capacity of the atmosphere will 

increase by about 7%, as predicted by the Clausius-Clapeyron equation which defines the vapour 

pressure curve for two-phase media (e.g. Venturini et al. 2008). Thus, a warmer climate may be 

expected to result in more rainfall but global climate models (GCMs) indicate more complex 

effects. 

 The type (e.g. convective, orographic, etc.), frequency, amount and intensity of rainfall are 

all predicted to change. If the frequency of dry days increases due to warming, this does not 

necessarily mean that the frequency of extreme rainfall events will decrease, depending on the 

threshold used to define such events (Barnett et al. 2006, IPCC 2007, Kundzewicz et al. 2013). 

With the increased water vapour in the atmosphere, more frequent and higher intensity rainfall 

events are likely to occur in many regions (Douville et al. 2002). High intensity rainfall, particularly 

if the total amount of storm rainfall is also very high as is often the case, commonly gives rise to 

short-duration, potentially high impact hazards such as flash floods. As a direct consequence of the 

changing rainfall patterns, landslides are also expected to increase in frequency. These constitute 

additional but related hazards that may be triggered by higher storm rainfall or, in the case of debris 

flows, caused by storm runoff in steep mountain streams entraining sediment. There are also signs 

that a higher incidence of prolonged droughts may be expected, especially in warmer climates. A 

series of Atmosphere-Ocean General Circulation Model (AOGCMs) simulations––run in advance 

of a 2008 IPCC report to represent the effects of a warmer climate––indicated a decrease in summer 

rainfall in most parts of the mid-latitudes (including Iran) and, thus, a greater risk of drought in 

these regions (Bates et al. 2008). 

 Northern Iran, comprising provinces that border the southern coastline of the Caspian Sea 

(Fig. 1), is susceptible to droughts and floods. Planning for improved water management for 

drought periods and infrastructure protection for floods is particularly important because it is one of 
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Iran’s major tourist areas. Katiraei et al. (2007) found a trend of increasing annual rainfall totals 

over the period of 1960–2001 in the east of Mazandaran Province (significant at p = 0.10) and in 

2001 there was a devastating flood in Golestan Province that resulted from a large rainfall event 

(>150 mm in 12 hours) of which the first hour was of very high intensity (50 mm h
–1

) (Sharifi et al. 

2012). Rainfall in the northern part of Iran mainly originates from southerly extensions of Siberian 

anticyclones. As high pressure develops over Siberia, elongated ridges of high pressure move to the 

north of Iran and pass over the Caspian Sea, receiving heat and humidity from the surface of the 

sea. The moist airflow moves south and rises as it hits the northern slope of the mountains, cooling 

and condensing to producing orographic precipitation. According to Rasoli et al. (2012), the 

Siberian high pressure system has decreased in strength in winter by up to 0.005 mb y
–1

 over a 61-

year period (1948–2009). Therefore, the airflow from the north to the south of the Caspian Sea 

became weaker and transported less moisture, resulting in lower winter rainfall in northern 

Iran. However, the pressure of the central area of the Siberian high pressure in spring has increased 

by up to 0.059 mb y
–1

, producing higher spring rainfall in northern Iran, generally of higher 

intensity, thus leading to an expectation of more floods in the southern Caspian Sea coastal area 

during the spring season (Rasoli et al. 2012). In parallel with the increasing rainfall, Tabari et al. 

(2011) found a significant annual trend of decreasing water levels in 190 observation wells in the 

east of Mazandaran Province during 1985–2007, although they did not explain the reasons for this 

trend. Possibilities include a higher proportion of convective rainfall which generates a higher 

runoff ratio and higher demand for abstracted groundwater from rising immigrant and tourist 

numbers. 
 

 

Figure 1. Location of the Casilian Catchment in Mazandaran Province, northern Iran, showing 

locations of hydrometric monitoring stations within the catchment. Valikbon station defines the 

outflow from the study catchment. 
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 Long-term changes to runoff regimes and groundwater resources have also been observed in 

many other parts of the world. For example, Banasik and Hejduk (2012) found a trend of decreasing 

annual runoff from a small catchment in Poland over a 48-year period with no apparent cause, in 

that there had been no precipitation trend and no human interventions. However, other recent 

studies have distinguished the influence of climatic variations from the more tangible evidence of 

anthropogenic modification of catchments and increasing utilisation of available water resources. 

Chang et al. (2015) found that in the large catchment of the Weihe River in northwest China, a 

declining trend in annual runoff was associated with reducing precipitation during 1956-70 but that 

after 1970 human activities had twice as much influence on the continuing runoff reductions; 

similarly, the contributions of human activities was three times higher since 1990 in the Wei River 

basin in China (Zhan et al. 2014). Regionally, it becomes more difficult to explain runoff trends as 

there may be complex interactions between different factors in different parts of a region or even 

different subcatchments of a large river basin, especially if some rivers show long-term increases in 

annual runoff (e.g. in some European countries: Stahl et al. 2010) while in others the runoff is seen 

to be reducing (e.g. Li et al. 2014, Jiang et al. 2015), and seasonal changes may be more significant 

in magnitude and potential impact than annual trends (Stahl et al. 2010). Even at much smaller 

spatial scales, if additional natural factors such as snowmelt or significant groundwater storage 

contribute to the overall hydrological response of a catchment, it becomes increasingly difficult to 

separate climatic effects from human activities (e.g. Langhammer et al. 2015). Predictions of future 

runoff trends resulting from different land use or catchment management scenarios ultimately 

require adequate understanding of possible climatic patterns and corresponding runoff responses. 

This study addresses the topic from the latter perspective. 

 The aim of this paper is to use outputs from General Circulation Models (GCMs––often 

referred to as “global climate models”) to identify and characterise possible future changes in the 

runoff regimes of forested catchments in northern Iran that drain into the Caspian Sea along its 

southern coastline. Runoff for future climate scenarios was estimated using a publicly available 

catchment runoff model. The working hypothesis is that runoff regimes will show significant 

changes compared with the present, with the direction of change (i.e. increasing or decreasing 

runoff) varying both annually and seasonally in line with the rainfall trends identified in recent 

decades. Implications of the results for future water management are identified and discussed. 

 

 

2 STUDY SITE 
 

This research focused on the Casilian Catchment (also known in Iran as Cassilian, Kasilian or 

Kassilian Catchment) in Mazandaran Province, northern Iran (53°18’ to 53°30’E and 35°58’ to 

36°07’N) (Fig. 1). This catchment was selected because the data availability was far greater than for 

other areas. Tamab, Iran’s Water Resources Research Organization based in Tehran, collect basic 

climate (rainfall and temperature) and runoff (discharge and sediment) data for many catchments in 

Iran (Parvardeh 1985). The data used for this research were originally provided by the Head of 

Tamab’s Surface Water Section, J. Parvardeh, to BZ for research on Casilian Catchment. The study 

area within this catchment is bounded to the north by the Setic and Chartab mountains with heights 

of up to 1790 m and to the south by the Mirozad (2700 m) and Golrad (3349 m) mountains. To the 

west is the Getoja Mountain (2043 m) and to the east is the Chartab Mountain (1613 m). The main 

river drains northwards, eventually discharging into the Caspian Sea. The study area is defined as 

the upper 65.7 km
2
 of the catchment upstream of Valikbon hydrometric station (see below) at 1120 

m elevation. Most of the upper tributaries extend to the southern rim of the catchment at around 

3000–3300 m elevation. The longest flow path, representing the catchment length, is 17.8 km. 

Indicative mean channel gradients are 0.5 for the first two kilometres of the upper tributaries down 

the steep escarpment that defines the southern edge of the catchment, then 0.057 for the next 15.8 

km. Approximately 80% of the catchment is forested, the upstream (southern) half of the catchment 

comprising high quality forest that could theoretically be susceptible to significant deforestation in 
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the future. Most of the downstream area of the catchment has been cleared for agriculture (crops 

and pasture) and there are several small villages. The geology of the catchment is dominated by 

shale, sandstone, marl and siltstone. 

 There are two meteorological stations (Darzikola and Sangdeh), one rainfall station (Kale) 

and one hydrometric station (Valikbon) in the Casilian Catchment (Fig.1). Sangdeh station, located 

at the southeast end of Sangdeh village, records daily rainfall and daily temperatures. Darzikola 

station only records daily rainfall data, as does Kale station. The Valikbon hydrometric station, on 

the Casilian River, is located near to Valikbon village and records the discharge from the upper 

catchment that comprises the study area. 

 The mean annual rainfall on the Casilian Catchment for the 20-year period 1977–1996 was 

estimated to be around 756 mm, using Thiessen polygons (McCuen 1998) formed around the three 

rainfall stations. Monthly mean rainfall varies throughout the year from around 48 mm in December 

(minimum) to 89 mm in August (maximum). The mean annual runoff from 13 full years between 

1980 and 1996 for which complete discharge data exist was 229 mm. The mean runoff ratio for 

these 13 years was 0.27. However, the runoff ratio for March and April (61 days) was highly 

variable across the 13 years of data, exceeding 1.0 in 1980 (1.34) and 1982 (2.00). We interpret this 

as demonstrating a major snowmelt contribution to the runoff regime (after Zampieri et al. 2015). 

According to Tamab, snowfall on this catchment is negligible. However, it is likely that the Tamab 

data and residents’ comments are referring to snow at Sangdeh and further downstream. As is the 

case on the mountains along the northern side of Tehran we think that there is significant snowfall 

most winters on the high mountains upstream of Sangdeh where people rarely go and where there 

are no monitoring facilities. 

 

 

3 METHODOLOGY 

 

We obtained the most complete set of catchment hydrometric data for northern Iran that was 

available from Tamab, which was for the Casilian Catchment (Parvardeh 1985). The outline 

strategy for this research was to use downscaled GCM climate data for three future periods of the 

21st century and three global emissions scenarios as the input data for estimating total runoff 

volumes from the catchment using a suitable rainfall-runoff model. GCM data were downscaled 

using a Weather Generator (WG). The simulations were performed for mean annual conditions and 

for seasonal conditions. 

 

3.1 Field data 

 

Daily precipitation and temperature data for the Casilian Catchment were obtained at Sangdeh for 

the period 23 September 1976 to 22 September 1997, but with some missing data. Discharge data 

from Valikbon were available for the periods 23 September 1979 to 22 September 1987, 23 

September 1988 to 22 September 1993 and 23 September 1994 to 22 September 1998. The 

incomplete discharge record limited the durations of time periods that could be utilised for this 

study. The longest continuous complete record included calendar years 1980–86 inclusive. This 7-

year period was thus designated the “baseline” period and its discharge regime is summarised in 

Table 3. 

 The accuracy and reliability of the recorded field data are not known and cannot be verified. 

Three of the authors of this paper (FH, APD, BZ) visited Sangdeh meteorological station and 

Valikbon hydrometric station on 24 May 2010 and were able to inspect the equipment and verify 

recording procedures with one of the station operators. As a result we are confident that the 

Sangdeh data are probably reliable but there are thought to be some systematic errors in the data 

from Valikbon resulting in proportionally larger errors as the discharge reduces (J. Parvardeh, 

Tamab, pers. comm.). For the purposes of this study, however, any errors and inaccuracies in the 
input data will not materially affect the generalised results and interpretations of the modelling analyses. 
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Table 3. Summary of the runoff regime at Valikbon station in the Casilian Catchment. All values 

are discharges in cubic metres per second. Source: Tamab. 

 
SEASON DISCHARGE 1980 1981 1982 1983 1984 1985 1986 MEAN 

 

Autumn 
highest peak 3.23 4.17 2.04   3.34 2.85 1.70 0.56 – 

mean 0.41 0.40 0.44   0.34 0.29 0.22 0.11 0.32 

 

Winter 
highest peak 2.22 3.46 1.78   4.15 6.25 2.20 

no data 
– 

mean 0.68 0.66 0.45   0.85 0.77 0.40 0.64 

 

Spring 
highest peak 3.00 4.76 1.96   2.75 3.62 2.71 4.29 – 

mean 0.47 0.63 0.59   0.73 0.71 0.43 0.74 0.64 

 

Summer 
highest peak 1.92 5.75 3.63 13.87 1.88 0.73 0.66 – 

mean 0.17 0.55 0.24   0.79 0.21 0.09 0.04 0.30 

 

 

3.2 Climate data for future scenarios 

 

Different GCMs have been developed in various countries of the world. For a given emissions 

scenario, each GCM can be used to predict patterns of temperature and rainfall change for a region 

of the Earth’s surface (Kay et al. 2009). However, GCM outputs cannot be used directly for a 

specific site of interest due to their coarse scale: even in a high resolution GCM, one grid box 

represents an area of greater than 50 000 km
2
 (Semenov et al. 1998). One method by which GCM 

data can be used for small areas is to downscale the climate predictions using a “weather 

generator”. This is a model that can produce synthetic weather data for continuous periods, e.g. 

daily rainfall for several years, according to the statistical properties of present rainfall at a location 

of interest that are modified by a proportion indicated by the GCM output. 

 We used the Long Ashton Research Station Weather Generator (LARS-WG) for this study 

because it is readily available for use and its performance is regarded as being superior to that of 

other WGs such as WGEN and Artificial Neural Network models (Semenov et al. 1998, Sajjad et 

al. 2006). LARS-WG was used to downscale the Global Climate Model (GCM) outputs to the area 

around Sangdeh Station to overcome the limitations of the coarse scale GCM output. A new 

version, LARS-WG 5, generates rainfall and temperature data for 20-year periods 2011–2030, 

2046–2065 and 2080–2099 for 13 climate models and three scenarios, having specified the 

longitude, latitude and altitude of the station used to provide the statistics of the observed weather 

data. The performance of this WG was evaluated by entering the daily rainfall and daily maximum 

and minimum temperatures recorded at Sangdeh station from 1 January 1977 to 31 December 1996 

inclusive. The software calculated the monthly mean and monthly standard deviation of these 

parameters and then used these statistics to generate 300 years-worth of daily values (e.g. Semenov 

et al. 1998, Sajjad et al. 2006). It then compared these statistical properties for the original and the 

generated daily rainfall data using the t-test and the F-test. For both tests p < 0.05 indicating that the 

means of the observed and synthetic monthly rainfall totals, and the standard deviations of the two 

sets of monthly rainfall for each month, were not significantly different. Mean monthly minimum 

and mean monthly maximum temperatures of the observed and generated data for all months were 

identical, with only slight differences between the respective standard deviations. 

 To investigate the climate change effects on runoff from the Casilian Catchment, climate 

data representing the effects of different climate change scenarios were required as inputs for the 

rainfall-runoff model. Five different sources of uncertainty exist in climate change impact studies: 

(i) future greenhouse gas emissions; (ii) GCM structure; (iii) downscaling from GCMs; (iv) 

hydrological model structure; (v) hydrological model parameters (Kay et al. 2009, p.1). The 

uncertainty related to the choice of GCM is greater than that from the other sources of uncertainty 
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(Bates et al. 2008, Kay et al. 2009, Boyer et al. 2010, Bae et al. 2011). GCMs contain significant 

uncertainties and IPCC (2007) recommended that the results of different climate models and 

scenarios should be considered in climate change studies (Abbaspour et al. 2009). Thirteen climate 

models (BCM2, CNCM3, CSMK3, FGOALS, GFCM21, GIAOM, HADCM3, HADGEM, INCM3, 

IPCM4, NCCCSM, NCPCM and CGMRS) and three emissions scenarios (A1B, A2 and B1) that 

are available in LARS-WG provide different projections and produce different magnitudes and 

patterns of rainfall and temperature changes. 

 Using the same observed data as for the evaluation, above, plus the coordinates of Sangdeh 

station, LARS-WG produced daily rainfall and temperature data from all 13 models for three 7-year 

periods (2011–2017, 2046–2052 and 2080–2086). All simulations and analyses in this study use 7-

year periods because the baseline period 1980–86 (inclusive) is the longest complete record of 

discharge in the field data. The range of uncertainty in the GCM predictions (King et al. 2009, 

Semenov and Stratonovitch 2010, Semenov and Shewry 2011) is indicated in Fig. 2 for annual 

rainfall totals, the boxplots representing the 25th, 50th (median) and 75th percentiles of the outputs 

from the thirteen GCMs with the full (1977–96 inclusive) and baseline sets of observed data 

superimposed. Predicted annual rainfall totals are shown for each future simulation period under the 

influence of each emissions scenario. Fig. 3 shows a similar variability of results for GCM 

predictions of the number of days in each 7-year period with “heavy rainfall”, defined as daily 

rainfall >95th percentile (IPCC 2007, King et al. 2009). In this study the 95th percentile from all 

non-zero rainfall events for 1980–86 is 18 mm d
–1

, which occurred on 50 days within this period 

(i.e. seven days per year on average). The frequency of such heavy rainfall events is predicted to 

increase for all future periods and scenarios in comparison with the baseline observed data. 

 
3.3 Catchment rainfall-runoff modelling 

 

We used the HEC-HMS rainfall-runoff model for this research. HEC-HMS is the “Hydrological 

Modelling System” developed by the Hydrologic Engineering Centre of the US Corps of 

Engineering and has been used successfully for many types of investigations in different parts of the 

world (Cunderlik and Simonovic 2005). It is one of several rainfall-runoff modelling systems 

developed in recent years and made available for application to a wide range of hydrological issues, 

including investigation of the possible effects of global climate change on the hydrological 

processes of a catchment. 

 HEC-HMS comprises two main components: a catchment model and a meteorological 

model, the latter determining the net inputs to the subsurface hydrological system resulting from the 

weather patterns experienced by the study location. Critical to this is the determination of the mean 

monthly potential evapotranspiration (PET). The meteorological model incorporates the Penman–

Monteith method, which requires temperature, wind speed, solar radiation and relative humidity 

data (Bae et al. 2011), and the Thornthwaite method which only needs temperature data (Mahdavi 

2004). The latter was used in this study because only temperature data exist for the Casilian 

Catchment. This was not considered a significant limitation because uncertainties in PET estimation 

tend to have smaller effects on simulated runoff in climate change impact studies than the 

uncertainties arising from the type of GCM or the future climate scenario (e.g. Bae et al. 2011). 

HEC-HMS can also calculate runoff responses to snowfall but this requires data that do not exist for 

the Casilian Catchment including snowpack characteristics and parameters that control melting (e.g. 

solar radiation and dew point temperature). Consequently, it was considered unfeasible to attempt to 

model snowfall for this study. 

 The catchment model incorporates three rainfall-runoff transformation processes. The first 

of these calculates the volume of runoff from a catchment as being the proportion of rainfall 

remaining in the system after “losses” have been subtracted. This is done using a 5-layer Soil 

Moisture Accounting (SMA) procedure which estimates the losses to interception, infiltration, 

percolation and deep percolation and subtracts them from the precipitation. These losses contribute 

to canopy-interception storage, surface-depression storage, soil-profile storage and one or two  
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Figure 2. Variations in future annual rainfall projections for the Casilian Catchment produced by 

LARS-WG shown as boxplots (maximum, minimum, median, upper and lower quartiles of the 

mean annual values produced by 6-13 GCMs). The horizontal line represents the mean annual 

rainfall for both reference periods (2.0 mm difference). 

 

 

Figure 3. Variations in future projections of the number of days with “heavy rainfall”, i.e. >95th 

percentile of the observed base period, within each 7-year period for the Casilian Catchment 

produced by LARS-WG shown as boxplots (details as in Fig. 2). The horizontal line represents the 

number of such wet days recorded during the baseline period 1980-86 inclusive. 
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layers of groundwater storage (Cunderlik and Simonovic 2005). The output from the SMA 

procedure contributes to the other two transformation processes, direct runoff and groundwater 

flow. The direct runoff (i.e. channel discharge) is modelled using the SCS (Soil Conservation 

Service) dimensionless unit hydrograph and the groundwater flow is transformed into base flow by 

a linear reservoir base flow (LRBF) method that was designed to integrate with the SMA procedure 

(USACE-HEC 2000). 

 To model the hydrological processes in a catchment, HEC-HMS requires values for 23 

parameters. Most parameters of the catchment model need only an initial estimate, their final values 

being obtained through automated optimisation using the “Nelder Mead” search method. The 

estimated parameter values are adjusted until the value of the selected objective function––in this 

case the goodness-of-fit between the observed and computed total runoff volume from the 

catchment––is minimized (Scharffenberg and Fleming 2010). For this study, initial values for all 23 

parameters (listed in Table 1) were obtained from geology, soil and land use maps and from 

published sources (Rawls et al. 1982, USDA 1986, Bennett 1998, McCuen 1998, Singhal and 

Gupta 1999, Chainuvati and Athipanan 2001, Breuer et al. 2003, Fleming and Neary 2004, Garcı´a 

et al. 2008, McEnroe 2010). A standard calibration–validation procedure was then followed (as 

initially set out in Section 2.1 of Trucano et al. 2006), with parameter optimisation taking place 

within the calibration stage. 

 

 

4 RESULTS 

 

4.1 Model calibration and validation 

 

Calibration of the catchment model was performed for two different rainfall inputs, using: (i) the 

mean rainfall of three stations (Sangdeh, Kale and Darzikola) calculated by the Thiessen method, 

and (ii) the rainfall recorded at Sangdeh rainfall station only, to determine which option appeared to 

correspond more closely with the observed runoff patterns. Observed rainfall and temperature data 

were first entered into the meteorological model in order to determine the mean monthly PET, then 

the catchment model was run and its calculated discharge was compared with the observed 

discharge. The percentage error in the calculated annual runoff volume was designated as the 

objective function for this and all subsequent model runs because this study is concerned with 

future changes to runoff regimes: 

 

 % error (Rv)  =  (SRv – ORv) / ORv       (1) 

 

where Rv is the runoff volume, “S” indicates “simulated” and “O” is “observed”. The calibration 

was performed as a “continuous” simulation using rainfall, temperature and discharge data for the 

period 1 January 1980 to 31 December 1986 inclusive and the smallest error, 4.8%, was obtained 

from parameter values optimised for rainfall at Sangdeh station only (Table 1). These optimised 

parameter values and Sangdeh rainfall data were therefore used to validate the catchment model 

using observed data from 1 January 1989 to 31 December 1992 inclusive; the resulting error of 

4.9% was considered acceptable. These periods of observed data were used because they comprise 

the most complete parts of the data record. 

 The performance of HEC-HMS was evaluated further by performing the same calibration–

validation simulations for each season separately, following Iran’s water year, but using the 

optimised parameter values from the main calibration exercise. The runoff volumes for each season 

were extracted from the full calibration and validation simulations and compared with the 

corresponding runoff volumes recorded at Valikbon. Table 2 shows that for half of the year the 

optimised parameter values do not produce very accurate results, which suggests that there are some 

significant seasonal controls operating in the catchment. A strong possibility is that winter 

precipitation is actually snow that accumulates rather than contributing to runoff, and that some  
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Table 1. Initial estimates of parameter values in HEC-HMS for calibration of the “continuous” model after 

optimisation using the “Nelder Mead” search method and rainfall data from Sangdeh station. 

 
PARAMETER UNITS VALUE FOR “CONTINUOUS” MODEL 

Canopy storage  mm 1.2 

Surface storage  mm 1.0 

Maximum soil infiltration rate  mm h
–1

 50.1 

Impervious area  % 3.6 

Soil storage  mm 125.0 

Lag time  min 1007.0 

Tension storage  mm 15.0 

Soil percolation rate  mm h
–1

 6.1 

Initial canopy storage  % 20.0 

Initial surface storage  % 20.0 

Initial soil storage  % 30.0 

Initial groundwater 1 (GW1) storage  % 40.0 

GW1 storage  mm 7.0 

GW1 percolation  mm h
–1

 0.7 

GW1 coefficient  h 50.2 

GW1 initial discharge (linear reservoir)  m
3
 s

–1
 0.5 

GW1 coefficient (linear reservoir)  h 50.2 

Initial groundwater 2 (GW2) storage  % 40.0 

GW2 storage  mm 7.0 

GW2 percolation  mm h
–1

 0.7 

GW2 coefficient  h 50.2 

GW2 initial discharge (linear reservoir)  m
3
 s

–1
 0.0 

GW2 coefficient (linear reservoir)  h 50.2 

 

 
Table 2. Percent error in simulated runoff volumes for the full year and seasonal calibration and validation 

periods. 

 
CALIBRATION VALIDATION 

Full year, 7 years 

1 Jan. 1980 to 31 Dec. 1986  
4.8% 

Full year, 4 years 

1 Jan. 1989 to 31 Dec. 1992  
4.9% 

 

CALIBRATION PERIOD (CALIBRATED) VALIDATION PERIOD (CALIBRATED) 

Autumn, 7 years 

23 Sep.–21 Dec. only 
7.4% 

Autumn, 4 years 

23 Sep.–21 Dec. only 
4.9% 

Winter, 7 years 

22 Dec.–20 Mar. only 
32.7% 

Winter, 4 years 

22 Dec.–20 Mar. only 
14.3% 

Spring, 7 years 

21 Mar.–21 Jun. only 
21.8% 

Spring, 4 years 

21 Mar.–21 Jun. only 
19.9% 

Summer, 7 years 

22 Jun.–22 Sep. only 
5.2% 

Summer, 4 years 

22 Jun.–22 Sep. only 
3.7% 

 

 

runoff in spring is from snowmelt that does not correspond with any rainfall. The fact that the 

calibrated model performs better against the validation data than against the calibration data for all 

seasons separately may reflect inherent differences between the two datasets, such as larger 

seasonal contrasts during the calibration period that would be smoothed somewhat by the model 

calibration. Furthermore, we consider it very likely that some catchment parameter values vary 

seasonally, particularly (mean) canopy storage relating to the deciduous tree cover but also soil 

infiltration rate and soil storage, which will both be zero if the ground is frozen. 
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 The absence of data relating to snowfall or the possible duration and spatial extent of 

freezing conditions in the upper catchment precluded rigorous seasonal optimisation of the model 

for this study. However, we did set out to explore the possible seasonal changes to runoff that may 

arise in the future. Consequently we proceeded by using the calibrated parameters obtained from 

annual optimisation, recognising that the seasonal results that we present must be interpreted with 

caution but that they may nevertheless indicate temporal patterns that should be considered in any 

future water management planning for the region. 

 

4.2 Runoff simulations for future rainfall scenarios 

 

Different climate models represented within LARS-WG each provide projections for every climate 

scenario in terms of patterns of rainfall and temperature. The number of GCM outputs for each 

scenario and future 7-year period is shown in Table 4. The variations in these outputs are shown in 

Figs. 2 and 4. Fig. 4 shows the mean annual temperature already higher than the reference periods 

(1980–86 or 1977–96) and increasing significantly from each 7-year period to the next in all 

scenarios, though less dramatically for scenario B1. Fig. 2 indicates decreasing annual rainfall 

throughout the century but with higher inter-annual variability towards the end of the century. 

Again, this general trend is not as strong for scenario B1. However, the annual rainfall totals are 

suggested to be initially higher than recorded during either reference period but falling to lower 

levels later. 

 

 
Table 4. Number of GCMs producing climate outputs for the dates and scenarios considered in this study. 

 

 A2 B1 A1B 

2011-17 8 9 13 

2046-52 8 9 13 

2080-86 6 9 11 

 

 

 
Table 5. Mean projected changes in annual rainfall (% of reference period values) and annual 

temperature (°C) from LARS-WG and corresponding annual runoff  (% of reference period values) 

simulated by HEC-HMS. 

 
Scenario: A2 B1 A1B 

Dates: 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 

Reference 

period 

 

Percent   change   in   annual   rainfall 

1980-86 5.2 0.4 -13.7 3.7 3.7 1.1 2.6 0.1 -6.9 

1977-96 5.4 0.6 -13.5 3.9 3.9 1.3 2.9 0.3 -6.6 

 
 

Change   in   annual   temperature   (°C) 

1980-86 1.3 2.4 4.5 1.0 1.7 2.1 1.0 2.4 3.6 

1977-96 1.2 2.3 4.4 0.9 1.6 2.0 0.9 2.3 3.5 

 
 

Percent   change   in   annual   runoff 

1980-86 4.1 -1.5 -20.6 3.4 2.7 -1.6 1.8 -2.8 -12.7 
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Figure 4. Variations in future annual temperature projections for the Casilian Catchment produced 

by LARS-WG shown as boxplots (details as in Fig. 2). The upper horizontal line shows the mean 

annual temperature for the 1977-96 reference period and the lower line represents the same for 

1980-86 (0.1°C difference). 

 

 

Figure 5. Variations in future annual runoff for the Casilian Catchment simulated by HEC-HMS 

shown as boxplots (details as in Fig. 2). The horizontal line represents the mean annual runoff for 

the baseline period 1980-86. 
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 The median changes in rainfall and temperature obtained from the GCMs and the 

corresponding changes in annual runoff calculated by HEC-HMS are indicated in Table 5 as 

percentages of the mean values for the two reference periods. These annual runoff variations are 

illustrated in terms of depth-equivalent runoff in Fig. 5. The patterns of projected runoff variations 

are very similar to the patterns of projected annual rainfall totals. Table 6 shows the seasonal 

changes as percentages of the mean values for the two reference periods. These results for winter 

and spring must be considered uncertain for reasons identified earlier, although the increasing 

temperatures may result in less of the winter (and spring) precipitation falling as snow with less of a 

delay between precipitation and (snowmelt) runoff. However, the results in Table 6 were obtained 

with no representation of snow and subsequent melting yet still show significantly higher mean 

runoff in spring, an effect that may be further exaggerated by melting of winter snow and has been 

highlighted by Rasoli et al. (2012) as an effect of the changing Siberian high pressure. The 

predicted reduction in mean runoff in summer compared with the reference period is similarly 

marked but also somewhat more reliable, notwithstanding the caveats discussed previously. 

 

 
Table 5. Mean projected changes in annual rainfall (% of reference period values) and annual 

temperature (°C) from LARS-WG and corresponding annual runoff  (% of reference period values) 

simulated by HEC-HMS. 

 
Scenario: A2 B1 A1B 

Dates: 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 

Reference 

period 

 

Percent   change   in   annual   rainfall 

1980-86 5.2 0.4 -13.7 3.7 3.7 1.1 2.6 0.1 -6.9 

1977-96 5.4 0.6 -13.5 3.9 3.9 1.3 2.9 0.3 -6.6 

 
 

Change   in   annual   temperature   (°C) 

1980-86 1.3 2.4 4.5 1.0 1.7 2.1 1.0 2.4 3.6 

1977-96 1.2 2.3 4.4 0.9 1.6 2.0 0.9 2.3 3.5 

 
 

Percent   change   in   annual   runoff 

1980-86 4.1 -1.5 -20.6 3.4 2.7 -1.6 1.8 -2.8 -12.7 

 

 

 

5 DISCUSSION 

 

Predicted changes to annual runoff from the Casilian Catchment correspond predictably with 

emissions scenarios. Scenario A2 represents slow global economic convergence with corresponding 

increasing demand for energy and materials and slow development of more efficient and non-fossil 

energy sources (IPCC 2000), i.e. the worst of the three represented in this study. Using all available 

GCMs for the selected future periods of time and emissions scenarios incorporated into LARS-WG, 

we have found that this scenario gives rise to more warming (Fig. 4) and the greatest reductions in 

mean annual rainfall (Fig. 2) and, thus, runoff (Fig. 5) towards the end of the present century. 

Likewise scenario B1 which represents the most optimistic case––rapid catch-up of less developed 

regions but with reduced energy demand and more rapid expansion of renewable supplies (IPCC 

2000)––shows the smallest changes with perhaps a very small reduction in mean annual runoff by 

the 2080s. Predictions arising from scenario A1B, representing a more “balanced” pattern of global 

changes between A2 and B1, fall between these extreme cases. These are, of course, very broad 

generalisations that hide much variability and uncertainty. The variability among the rainfall 

predictions from the different GCMs is illustrated in Fig. 2, but this integration of the different 

predictions serves to reduce the degree of uncertainty inherent in each individual GCM output 

(King et al. 2009, Semenov and Stratonovitch 2010, Semenov and Shewry 2011). 
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Table 6. Mean projected changes in seasonal rainfall (% of reference period values) and temperature (°C) 

from LARS-WG and corresponding seasonal runoff  (% of reference period values) simulated by HEC-

HMS: (a) autumn, (b) winter, (c) spring, (d) summer. In all cases, the mean value for each season from all 

years in the respective data period is compared with the corresponding mean value for each season from all 

years in each simulation period. 

 
(a) A2 B1 A1B 

 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 

Ref. period Percent   change   in   autumn   rainfall 

1980-86 6.3 10.1 2.5 5.1 2.2 4.8 4.1 3.8 -3.8 

1977-96 11.5 15.4 7.5 10.2 7.1 9.9 9.1 8.9 0.8 

 Change   in   autumn   temperature   (°C) 

1980-86 1.4 2.4 4.3 0.9 1.8 2.3 1.3 2.3 3.4 

1977-96 4.2 5.2 7.1 3.7 4.6 5.1 4.1 5.1 6.2 

 Percent   change   in   autumn   runoff 

1980-86 3.8 10.0 -1.1 5.6 1.2 2.9 2.6 3.1 -8.2 

 

 
 (b) A2 B1 A1B 

 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 

Ref. period Percent   change   in   winter   rainfall 

1980-86 1.2 0.0 0.4 -0.9 1.2 -3.9 -0.2 -0.3 -1.9 

1977-96 -2.6 -3.8 -3.4 -4.6 -2.6 -7.5 -3.9 -4.0 -5.5 

 Change   in   winter   temperature   (°C) 

1980-86 0.9 1.9 3.4 0.6 1.5 1.6 0.7 1.9 2.7 

1977-96 3.9 4.9 6.4 3.6 4.5 4.6 3.7 4.9 5.7 

 Percent   change   in   winter   runoff 

1980-86 1.2 -2.3 -3.0 -2.3 -0.8 -4.8 -2.0 -2.1 -4.1 

 

 
 (c) A2 B1 A1B 

 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 

Ref. period Percent   change   in   spring   rainfall 

1980-86 18.5 9.7 -7.5 22.1 13.3 12.8 17.7 11.2 -0.1 

1977-96 7.9 -0.1 -15.8 11.1 3.1 2.6 7.1 1.2 -9.1 

 Change   in   spring   temperature   (°C) 

1980-86 1.2 2.5 4.6 1.0 1.8 2.3 1.0 2.5 3.4 

1977-96 4.3 5.6 7.7 4.1 4.9 5.4 4.1 5.6 6.5 

 Percent   change   in   spring   runoff 

1980-86 32.3 14.2 -5.3 32.4 22.6 18.8 25.9 18.6 3.8 

 

 
 (d) A2 B1 A1B 

 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 2011-17 2046-52 2080-86 

Ref. period Percent   change   in   summer   rainfall 

1980-86 -12.9 -20.4 -31.1 -8.6 -10.2 -14.9 -11.1 -19.1 -22.3 

1977-96 -9.9 -17.7 -28.7 -5.4 -7.1 -12.0 -8.0 -16.3 -19.6 

 Change   in   summer   temperature   (°C) 

1980-86 1.3 2.7 5.1 1.2 2.0 2.6 1.0 2.7 3.8 

1977-96 4.1 5.5 7.9 4.0 4.8 5.4 3.8 5.5 6.6 

 Percent   change   in   summer   runoff 

1980-86 -18.0 -28.5 -41.8 -12.9 -15.7 -21.0 -15.9 -23.6 -30.1 

 

 

 Predicted changes to seasonal runoff from the Casilian Catchment show broadly the same 

patterns across the three scenarios but future change compared with the reference periods may be 

insignificant in autumn and winter. However, the modelling suggests rainfall and total runoff to be 

higher in spring and much lower in summer. Using LARS-WG, all scenarios suggest that present 
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spring rainfall (i.e. 2011–17) should be ~20% higher than in 1980–86 or ~8–10% higher than 1977–

96, and that present summer rainfall should be ~10% lower than in 1980–86 and 1977–96 (Table 6). 

A study of rainfall data from 28 synoptic stations in Iran over the period 1967–2006 found that in 

northern Iran rainfall changed by +0–10% annually, +10% in spring, +0–30% in summer, +0–10% 

in autumn and -10–20% in winter (ShiftehSome'e et al. 2012). The predictions for autumn and 

spring thus appear consistent with observations but those for summer and winter do not. However, 

fifteen recent AOGCM runs for a future warmer climate indicate a decrease in summer rainfall in 

most parts of the mid-latitudes (which include Iran), indicating a greater risk of droughts in these 

regions in summer (Bates et al. 2008, p.38). 

 The uncertainties associated with the prediction of future climates are well documented, not 

least arising from the widely varying patterns of rainfall generated by different climate models 

(Bates et al. 2008). Previous studies have explored the possible effects of climate change on water 

resources in Iran (Babaeian et al. 2007; Abbaspour et al. 2009; Zarghami et al. 2011) and elsewhere 

(e.g. Bae et al. 2008) but using outputs from only one GCM, which greatly limits the validity and 

usefulness of the findings. More generally, GCMs have projected that mean water vapour, 

evaporation, mean rainfall especially mean annual rainfall, extreme rainfall events and rainfall 

intensity are likely to increase in the future (Karl et al. 1996, SWCS 2003, IPCC 2007, Zhang et al. 

2009). Indeed, a small increase in mean annual rainfall that has been observed worldwide during the 

20th century has been the result of heavy rainfall events (Easterling et al. 2000, Nearing et al. 2005, 

Rahimzadeh 2009). For example, Karl and Knight (1998) and Groisman et al. (2001) reported an 

increase by 10% from 1910 to 1996 over the United States with 53% of this increase arising from 

10% of precipitation events (i.e. the most intense rainfall) (Nearing et al. 2005). 

 Drought and flooding are the two high risk Iranian weather conditions. The predicted 

decrease in summer rainfall and higher evapotranspiration (due to higher temperatures) can be 

expected to cause a reduction in the soil water and groundwater recharge. Indeed, even with higher 

mean rainfall, there may be less groundwater recharge if the rain falls primarily during high 

intensity convective events that generate surface runoff rather than infiltrating into the soil. Thus, 

any water management plans for northern Iran must take account of both types of hazard, such as an 

integrated proposal that floodwater arising from higher spring rainfall should be stored using 

different methods including ground water recharge systems and recharge ponds (Sharifi et al. 2012) 

to increase the availability of water during drought periods. 

 Irrespective of the seasonal patterns, Figure 3 suggests that whichever scenario applies, the 

frequency of “extreme events” in the Casilian Catchment (i.e. >18 mm d
–1

) will increase compared 

with the baseline period. In general, more frequent extreme events in the future can be expected to 

result in more flooding events for any catchment at any time of year (Abbaspour et al. 2009), 

particularly in the form of “flash floods” and often related rainfall-induced hazards such as debris 

flows and other types of landslides. Detailed hazard and risk assessment exercises will be needed in 

order to devise appropriate strategies for minimising and mitigating the impacts of these types of 

events. Typical strategies may include hazard zonation, for example, preventing further 

development in high risk locations, and updating infrastructure specifications such as larger culverts 

and bridge spans to accommodate higher discharges and reduce accumulation of floodwater 

upstream of such structures. As always, the implementation of such strategies is likely to depend on 

perceptions of risk as well as scientific interpretations of probabilities balanced against local and 

regional economic and political factors including the healthy tourism industry in northern Iran. 

 

 

6 CONCLUSIONS 

 

This study suggests that future patterns of runoff from forested catchments bordering the south 

coast of the Caspian Sea in northern Iran will directly correspond with predicted changes in rainfall. 

Overall, patterns of rainfall and runoff in autumn and winter may be little different from the present, 

but that significantly higher rainfall and runoff may occur during spring with significantly lower 
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rainfall and runoff in summer. The corresponding hazard scenarios are thus for higher probabilities 

of regional-scale flooding in spring and droughts in summer. This presents a fortuitously ideal basis 

for integrated water management strategies that capture and store excess spring runoff in order to 

mitigate the effects of possible summer droughts. However, a higher proportion of the rainfall is 

expected to occur as occasional high intensity events that can be expected to generate flash floods– 

and possibly landslides – at any time of year. Management and mitigation of these hazards will be 

required, particularly if the tourism industry of northern Iran is not to be adversely affected in the 

future. 
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