37 research outputs found

    Magnetic Calorimeter Option for the Lynx X-Ray Microcalorimeter

    Get PDF
    One option for the detector technology to implement the Lynx x-ray microcalorimeter (LXM) focal plane arrays is the metallic magnetic calorimeter (MMC). Two-dimensional imaging arrays of MMCs measure the energy of x-ray photons by using a paramagnetic sensor to detect the temperature rise in a microfabricated x-ray absorber. While small arrays of MMCs have previously been demonstrated that have energy resolution better than the 3 eV requirement for LXM, we describe LXM prototype MMC arrays that have 55,800 x-ray pixels, thermally linked to 5688 sensors in hydra configurations, and that have sensor inductance increased to avoid signal loss from the stray inductance in the large-scale arrays when the detectors are read out with microwave superconducting quantum interference device multiplexers, and that use multilevel planarized superconducting wiring to provide low-inductance, low-crosstalk connections to each pixel. We describe the features of recently tested MMC prototype devices and simulations of expected performance in designs opti- mized for the three subarray types in LXM

    Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2

    Get PDF
    AbstractWhile the cardiotoxicity of doxorubicin (DOX) is known to be partly mediated through the generation of reactive oxygen species (ROS), the biochemical mechanisms by which ROS damage cardiomyocytes remain to be determined. This study investigates whether S-glutathionylation of mitochondrial proteins plays a role in DOX-induced myocardial injury using a line of transgenic mice expressing the human mitochondrial glutaredoxin 2 (Glrx2), a thiotransferase catalyzing the reduction as well as formation of protein鈥揼lutathione mixed disulfides, in cardiomyocytes. The total glutaredoxin (Glrx) activity was increased by 76% and 53 fold in homogenates of whole heart and isolated heart mitochondria of Glrx2 transgenic mice, respectively, compared to those of nontransgenic mice. The expression of other antioxidant enzymes, with the exception of glutaredoxin 1, was unaltered. Overexpression of Glrx2 completely prevents DOX-induced decreases in NAD- and FAD-linked state 3 respiration and respiratory control ratio (RCR) in heart mitochondria at days 1 and 5 of treatment. The extent of DOX-induced decline in left ventricular function and release of creatine kinase into circulation at day 5 of treatment was also greatly attenuated in Glrx2 transgenic mice. Further studies revealed that heart mitochondria overexpressing Glrx2 released less cytochrome c than did controls in response to treatment with tBid or a peptide encompassing the BH3 domain of Bid. Development of tolerance to DOX toxicity in transgenic mice is also associated with an increase in protein S-glutathionylation in heart mitochondria. Taken together, these results imply that S-glutathionylation of heart mitochondrial proteins plays a role in preventing DOX-induced cardiac injury

    Attenuation of Doxorubicin-Induced Cardiac Injury by Mitochondrial Glutaredoxin 2

    Get PDF
    While the cardiotoxicity of doxorubicin (DOX) is known to be partly mediated through the generation of reactive oxygen species (ROS), the biochemical mechanisms by which ROS damage cardiomyocytes remain to be determined. This study investigates whether S-glutathionylation of mitochondrial proteins plays a role in DOX-induced myocardial injury using a line of transgenic mice expressing the human mitochondrial glutaredoxin 2 (Glrx2), a thiotransferase catalyzing the reduction as well as formation of protein鈥揼lutathione mixed disulfides, in cardiomyocytes. The total glutaredoxin (Glrx) activity was increased by 76% and 53 fold in homogenates of whole heart and isolated heart mitochondria of Glrx2 transgenic mice, respectively, compared to those of nontransgenic mice. The expression of other antioxidant enzymes, with the exception of glutaredoxin 1, was unaltered. Overexpression of Glrx2 completely prevents DOX-induced decreases in NAD- and FAD-linked state 3 respiration and respiratory control ratio (RCR) in heart mitochondria at days 1 and 5 of treatment. The extent of DOX-induced decline in left ventricular function and release of creatine kinase into circulation at day 5 of treatment was also greatly attenuated in Glrx2 transgenic mice. Further studies revealed that heart mitochondria overexpressing Glrx2 released less cytochrome c than did controls in response to treatment with tBid or a peptide encompassing the BH3 domain of Bid. Development of tolerance to DOX toxicity in transgenic mice is also associated with an increase in protein S-glutathionylation in heart mitochondria. Taken together, these results imply that S-glutathionylation of heart mitochondrial proteins plays a role in preventing DOX-induced cardiac injury

    Heat Capacity and Thermal Conductance Measurements of a Superconducting-Normal Mixed State by Detection of Single 3 eV Photons in a Magnetic Penetration Thermometer

    Get PDF
    We report on measurements of the detected signal pulses in a molybdenum-gold Magnetic Penetration Thermometer (MPT) in response to absorption of one or more 3 eV photons. We designed and used this MPT sensor for x-ray microcalorimetry. In this device, the diamagnetic response of a superconducting MoAu bilayer is used to sense temperature changes in response to absorbed photons, and responsivity is enhanced by a Meissner transition in which the magnetic flux penetrating the sensor changes rapidly to minimize free energy in a mixed superconducting normal state. We have previously reported on use of our MPT to study a thermal phonon energy loss to the substrate when absorbing x-rays. We now describe results of extracting heat capacity C and thermal conductance G values from pulse height and decay time of MPT pulses generated by 3 eV photons. The variation in C and G at temperatures near the Meissner transition temperature (set by an internal magnetic bias field) allow us to probe the behavior in superconducting normal mixed state of the condensation energy and the electron cooling power resulting from quasi-particle recombination and phonon emission. The information gained on electron cooling power is also relevant to the operation of other superconducting detectors, such as Microwave Kinetic Inductance Detectors

    Prototype Magnetic Calorimeter Arrays with Buried Wiring for the Lynx X-Ray Microcalorimeter

    Get PDF
    Metallic magnetic calorimeter (MMC) technology is a leading contender for detectors for the Lynx X-ray Microcalorimeter, which is an imaging spectrometer consisting of an array of greater than 100,000 pixels. The fabrication of such large arrays presents a challenge when attempting to route the superconducting wiring from the pixels to the multiplexed readout. If the wiring is designed to be planar, then an aggressive, submicron scale wiring pitch has to be employed, which is technically challenging to design and fabricate on account of the requirements of low inductance, low cross-talk, high critical currents and high yield. An alternative way to achieve large scale, high density wiring is through the use of multiple buried metal layers, planarized by Chemical Mechanical Planarization. This approach is well-suited for connecting thousands of pixels on a large focal plane to readout chips, and also for fabricating sensor meander coils with narrow line widths, which helps in increasing the sensor inductance and thus alleviates stray inductance issues associated with the wiring in large size arrays. In this work we describe the fabrication of high sensor inductance MMC arrays implementing Lynx concepts and incorporating multiple layers of buried Nb wiring. The detector array is composed of three sub-arrays with pixels optimized to meet the different science driven performance requirements of Lynx. In two of the sub-arrays we adopt a thermal multiplexing scheme to read out pixels by coupling 25 absorbers to a single sensor through thermal links of varied thermal conductance. We demonstrate the successful fabrication of multi-absorber MMCs with fine pitch pixels in very large size arrays

    Superconducting Effects in Optimization of Magnetic Penetration Thermometers for X-ray Microcalorimeters

    Get PDF
    Like MMCs, MPTs enable high energy microcalorimeters with zero bias power dissipation and potential resolution < 1 eV. MPTs can provide d(phi)/dT as large as 1000 (Phi)(sub 0)/K, with no excess noise, thereby reducing the importance of SQUID noise. Long coherence length in a Type-I superconducting MoAu film offers multiple advantages for efficient flux expulsion in MPT. Region of steepest d(phi)/dT is the Meissner effect in the small device; flux is expelled/penetrates to minimize free energy. Steepness of transition can be engineered with choice of film thickness and coil pitch relative to lambda(sub eff)(0), ratio of T/T(sub c), and bias circuit inductance

    Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    Get PDF
    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution

    Performance and Characterization of Magnetic Penetration Thermometer Devices for X-Ray Spectroscopy

    Get PDF
    We are developing magnetic penetration thermometers (MPTs) for applications in X-ray astronomy. These non-dissipative devices consist of an X-ray absorber in good thermal contact to a superconducting thin film with a transition temperature around T=100mK. A microfabricated superconducting planar inductor underneath is used to store a persistent current and couple the superconductor's diamagnetic response to a readout SQUID. The strong temperature dependence of the diamagnetic response make these devices suitable for highly sensitive macroscopic thermometers that are capable of achieving very high energy resolution. We present results achieved with MPTs consisting of MoAu bilayer sensors attached to overhanging square 250 micron by 250 micron gold absorbers that have demonstrated an energy resolution of delta E_FWHM=2.3eV at an X-ray energy of 5.9keV. A similar device has shown delta E_FWHM=2.0eV at 1.5 keV. Under certain conditions and for specific device geometries, the temperature responsivity of the MPTs can vary on long timescales degrading the spectral performance. We present the characterization of different inductor geometries to optimize the design for the highest possible temperature sensitivity and compare different device designs with respect to responsivity stability

    Athermal Energy Loss from X-Rays Deposited in Thin Superconducting Bilayers on Solid Substrates

    Get PDF
    An important feature that determines the energy resolution of any type of thin film microcalorimeter is the fraction of athermal energy that can be lost to the heat bath prior to the device coming into thermal equilibrium

    Magnetic Penetration Effects in Small Superconducting Devices

    Get PDF
    The temperature dependent behavior of a superconducting body in an applied magnetic field involves flux penetration/expulsion both from screening currents (within a magnetic penetration depth) and variations in the superconducting order parameter (locally to form vortices or a mixed state, or globally in the Meissner effect). The temperature dependence of the magnetic penetration depth, in particular, has been used to make highly sensitive macroscopic thermometers. For the microscopic device volumes required in sensitive low temperature photon detectors, properties of actual thin film materials, non-uniformity of applied magnetic fields, and the influence of measurement circuit dynamics are complicating factors. We discuss the various penetration effects as demonstrated in a particularly promising combination of material and geometry that we have used to make sensitive x-ray microcalorimeters
    corecore