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MPT operation
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A persistent current is trapped in the bias circuit above the T, of aluminum
wirebonds that connect each sensor to its associated SQUID.

As we cool or warm through the MoAu sensor’s superconducting transition, the
inductance of the meander changes as the MoAu film expels or allows entry of
flux, and we measure a current proportional to the sensor’s magnetic response.
MPTs give us a unique avenue to probe superconducting effects in MoAu films.
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Four different bias currents (806 uA, 903 uA, 952 uA, 1001 uA)
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M vs T curves at four bias currents Flux change normalized by bias Corresponding dM/dT’s

More jumps and more hysteresis at higher currents
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C and G Measurements
. Using 3-eV photons from a Blu-ray diode

‘ An example data set at 1001 uA and 100 mK (photon number resolved) ‘
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405 nm (3.06 eV) photons from a
Blu-ray diode outside the cryostat

Photon pulse width: 0.7 us,
repetition rate: 70 Hz
10,000 triggered records ateach T (1
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‘ An example data set at 1001 uA and 109 mK (photon number not resolved) ‘
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2. Noise spectra measurement
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1000 noise records averaged at each temperature
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* Measured C and G using
3-eV photon data only
(left) and together with
noise spectrum data
(right)
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Theory

1. Free-energy difference between superconducting and normal states of MPT

f= fraction of meander length for which MoAu enters a partly-normal
intermediate state

g = fractional width of normal stripes in intermediate state region

&= superconducting energy gap reduction in Ginzburg-Landau equation
Solve to find state with minimum free energy of MPT relative to fully
normal state. Free energy contains inductive and condensation terms:
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L, ()= L, (T.£.8.8) = (1= f) Ly (s (T.8:6).0) + L, (s (T-8:6).8)

Plot of f(T). Meissner transition
varies with bias.
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2. Heat capacity from second derivative of free energy Plot of £ (7).
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3. Thermal conductance: quasiparticle recombination & electron-phonon cooling

* In superconducting regions, recombination of quasiparticles
into Cooper pairs should be dominant cooling mechanism.
In normal regions, quasiparticles cool by only phonon emission.
We estimated Kaplan’s 7, and Wellstood’s X' from the
electronic and mechanical parameters for Mo and Au. A priori
values fit G data within one order of magnitude.
Fit results: 7, = 56 ps, 3'= 1.1x10° W/(K5m?).
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Conclusions

We measured the variation in heat capacity and thermal conductance of a
molybdenum-gold Magnetic Penetration Thermometer (MPT) near its field
dependent Meissner transition temperature.

We did this by two methods: detection of pulses in response to absorption of
one or more 3 eV photons, and equilibrium noise measurements.

Observed C & G show peaks in approximate agreement with a Ginzburg-Landau
model of the superconducting intermediate state of an MPT.
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