119 research outputs found

    A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells

    Get PDF
    Copyright: © 2018 Bankier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.BACKGROUND: Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. METHODS: Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. RESULTS: Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. CONCLUSION: Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.Peer reviewe

    Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants

    Get PDF
    [EN] Avocado (Persea americana Mill.) is a worldwide consumed fruit, with great interest for cosmetic and pharmaceutical industries; however, 30% of avocado fruits are bio-wastes (peels and kernels), converting them into a potential source of bioactive compounds, such as phenolic compounds. Therefore, the hydroethanolic extracts of peels and kernels of Persea america Mill. var. Hass were analysed regarding their individual phenolic profile by HPLC-DAD/ESI-MS and correlated with their antioxidant, antimicrobial and cytotoxic activities. Avocado by-products presented a very distinct phenolic profile, presenting higher concentration in peels (227.9 mg/g of extract for total phenolic content), mainly in (epi)catechin derivatives (175 mg/g of extract), followed by chlorogenic derivatives (42.9 mg/g of extract). In this study hydrophilic and lipophilic antioxidant assays were performed together for the first time in P. americana by-products, and although kernels showed a great antioxidant potential (EC50 values ranging from 18.1 to 276 mu g/mL), peels presented the highest potential (EC50 ranging from 11.7 to 152 mu g/mL), mainly due to the presence of phenolic compounds, and an overall better performance in the antibacterial assays. Further studies needs to be conducted to better understand the correlation between the presence of phenolic compounds and bioactivities, however, the main objective is to implement these biocompounds in different products and industries, due to results obtained, P. americana peels could be a great alternative in the substitution of synthetic antioxidants.The authors are grateful to the Foundation for Science and Technology(FCT, Portugal) and FEDER under Program PT2020 for financial support to CIMO (UID/AGR/00690/2013) and L. Barros contract. The authors would like to thank the Interreg Espana-Portugal for financial support through the project 0377_Iberphenol_6_E. B. Melgar thanks CONACyT for his grant (No. 329930). The authors are also grateful to the Serbian Ministry of Education, Science and Technological Development, grant number 173032 for financial support.Melgar-Castañeda, B.; Dias, MI.; Ciric, A.; Sokovic, M.; Garcia-Castello, EM.; Rodríguez López, AD.; Barros, L.... (2018). Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Industrial Crops and Products. 111:212-218. https://doi.org/10.1016/j.indcrop.2017.10.024S21221811

    Synthesis, characterization and antibacterial activity studies of new 2‑pyrral‑L‑amino acid Schif base palladium (II) complexes.

    Get PDF
    Three new 2-pyrral amino acid Schif base palladium (II) complexes were synthesized, characterized and their activity against six bacterial species was investigated. The ligands: Potassium 2-pyrrolidine-L-methioninate (L1), Potassium 2-pyrrolidine-L-histidinate (L2) and Potassium 2-pyrrolidine-L-tryptophanate (L3) were synthesized and reacted with dichloro(1,5- cyclooctadiene)palladium(II) to form new palladium (II) complexes C1, C2 and C3, respectively. 1 NMR, FTIR, UV–Vis,elemental analysis and conductivity measurements were used to characterize the products. The antibacterial activities of the compounds were evaluated against Gram-positive Staphylococcus aureus (S. aureus, ATCC 25923), methicillin-resistant Staphylococcus aureus (MRSA, ATCC 33591), Staphylococcus epidermidis (S. epidermidis, ATCC 12228) and Streptococcus pyogenes (S. pyogenes, ATCC 19615) and, gram-negative Pseudomonas aeruginosa (P. aeruginosa, ATCC 27853) and Klebsiella pneumoniae (K. pneumoniae, ATCC 13883) using the agar well difusion assay and microtitre plate serial dilution method. The palladium complexes were active against the selected bacteria with the imidazole ring containing complex C2 and indole heterocyclic ring containing complex C3 showing the highest activity

    Methods for the In vitro examination of the antibacterial and cytotoxic activities of antimicrobial peptides

    No full text
    Antimicrobial peptides (AMPs) represent an interesting class of molecules with expanding properties. Nature is the primary source of AMPs since they are produced by most living organisms including prokaryotes, plants, and animals. Thanks to their hundreds of thousands of species on earth, insects are one of the most abundant and varied resources of AMPs. Among these, many families have already been well characterized while new AMPs are continuously discovered. In this chapter, the main methods for the in vitro evaluation of the biological properties of AMPs are described. In particular, to examine the antimicrobial activity, the inhibition zone assay and the techniques for the determination of the minimal inhibitory concentration and the bactericidal concentration are reported in detail. For the evaluation of the possible cytotoxic effect toward mammalian cells, the hemolytic test and the colorimetric assay based on the reduction of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide are also described
    corecore