24 research outputs found

    CCDB: a curated database of genes involved in cervix cancer

    Get PDF
    The Cervical Cancer gene DataBase (CCDB, http://crdd.osdd.net/raghava/ccdb) is a manually curated catalog of experimentally validated genes that are thought, or are known to be involved in the different stages of cervical carcinogenesis. In spite of the large women population that is presently affected from this malignancy still at present, no database exists that catalogs information on genes associated with cervical cancer. Therefore, we have compiled 537 genes in CCDB that are linked with cervical cancer causation processes such as methylation, gene amplification, mutation, polymorphism and change in expression level, as evident from published literature. Each record contains details related to gene like architecture (exon–intron structure), location, function, sequences (mRNA/CDS/protein), ontology, interacting partners, homology to other eukaryotic genomes, structure and links to other public databases, thus augmenting CCDB with external data. Also, manually curated literature references have been provided to support the inclusion of the gene in the database and establish its association with cervix cancer. In addition, CCDB provides information on microRNA altered in cervical cancer as well as search facility for querying, several browse options and an online tool for sequence similarity search, thereby providing researchers with easy access to the latest information on genes involved in cervix cancer

    Cancer gene prioritization by integrative analysis of mRNA expression and DNA copy number data: a comparative review

    Get PDF
    A variety of genome-wide profiling techniques are available to probe complementary aspects of genome structure and function. Integrative analysis of heterogeneous data sources can reveal higher-level interactions that cannot be detected based on individual observations. A standard integration task in cancer studies is to identify altered genomic regions that induce changes in the expression of the associated genes based on joint analysis of genome-wide gene expression and copy number profiling measurements. In this review, we provide a comparison among various modeling procedures for integrating genome-wide profiling data of gene copy number and transcriptional alterations and highlight common approaches to genomic data integration. A transparent benchmarking procedure is introduced to quantitatively compare the cancer gene prioritization performance of the alternative methods. The benchmarking algorithms and data sets are available at http://intcomp.r-forge.r-project.orgComment: PDF file including supplementary material. 9 pages. Preprin

    A Computer Model for the Hydraulic Analysis of Open Channel Cross Sections

    No full text
    Irrigation and hydraulic engineers are often faced with the difficulty of tedious trial solutions of the Manning equation to determine the various geometric elements of open channels. This paper addresses the development of a computer model for the design of the most commonly used channel-sections. The developed model is intended as an educational tool. It may be applied to the hydraulic design of trapezoidal , rectangular, triangular, parabolic, round-concered rectangular, and circular cross sections. Two procedures were utilized for the solution of the encountered implicit equations; the Newton-Raphson and the Regula-Falsi methods.  In order to initiate the solution process , these methods require one and two initial guesses, respectively. Tge result revealed that the Regula-Flasi method required more iterations to coverage to the solution compared to the Newton-Raphson method, irrespective of the nearness of the initial guess to the actual solution. The average number of iterations for the Regula-Falsi method was approximately three times that of the Newton-Raphson method

    A Computer Model for the Hydraulic Analysis of Open Channel Cross Sections

    No full text
    Irrigation and hydraulic engineers are often faced with the difficulty of tedious trial solutions of the Manning equation to determine the various geometric elements of open channels. This paper addresses the development of a computer model for the design of the most commonly used channel-sections. The developed model is intended as an educational tool. It may be applied to the hydraulic design of trapezoidal , rectangular, triangular, parabolic, round-concered rectangular, and circular cross sections. Two procedures were utilized for the solution of the encountered implicit equations; the Newton-Raphson and the Regula-Falsi methods.  In order to initiate the solution process , these methods require one and two initial guesses, respectively. Tge result revealed that the Regula-Flasi method required more iterations to coverage to the solution compared to the Newton-Raphson method, irrespective of the nearness of the initial guess to the actual solution. The average number of iterations for the Regula-Falsi method was approximately three times that of the Newton-Raphson method
    corecore