4,860 research outputs found

    Harmonic Superspace, Minimal Unitary Representations and Quasiconformal Groups

    Get PDF
    We show that there is a remarkable connection between the harmonic superspace (HSS) formulation of N=2, d=4 supersymmetric quaternionic Kaehler sigma models that couple to N=2 supergravity and the minimal unitary representations of their isometry groups. In particular, for N=2 sigma models with quaternionic symmetric target spaces of the form G/HXSU(2) we establish a one-to-one mapping between the Killing potentials that generate the isometry group G under Poisson brackets in the HSS formulation and the generators of the minimal unitary representation of G obtained by quantization of its geometric realization as a quasiconformal group. Quasiconformal extensions of U-duality groups of four dimensional N=2, d=4 Maxwell-Einstein supergravity theories (MESGT) had been proposed as spectrum generating symmetry groups earlier. We discuss some of the implications of our results, in particular, for the BPS black hole spectra of 4d, N=2 MESGTs.Comment: 20 pages; Latex file: references added; minor cosmetic change

    Neutrino masses in the Lepton Number Violating MSSM

    Full text link
    We consider the most general supersymmetric model with minimal particle content and an additional discrete Z_3 symmetry (instead of R-parity), which allows lepton number violating terms and results in non-zero Majorana neutrino masses. We investigate whether the currently measured values for lepton masses and mixing can be reproduced. We set up a framework in which Lagrangian parameters can be initialised without recourse to assumptions concerning trilinear or bilinear superpotential terms, CP-conservation or intergenerational mixing and analyse in detail the one loop corrections to the neutrino masses. We present scenarios in which the experimental data are reproduced and show the effect varying lepton number violating couplings has on the predicted atmospheric and solar mass^2 differences. We find that with bilinear lepton number violating couplings in the superpotential of the order 1 MeV the atmospheric mass scale can be reproduced. Certain trilinear superpotential couplings, usually, of the order of the electron Yukawa coupling can give rise to either atmospheric or solar mass scales and bilinear supersymmetry breaking terms of the order 0.1 GeV^2 can set the solar mass scale. Further details of our calculation, Lagrangian, Feynman rules and relevant generic loop diagrams, are presented in three Appendices.Comment: 48 pages, 7 figures, v2 references added, typos corrected, published versio

    Polymer translocation out of confined environments

    Get PDF
    We consider the dynamics of polymer translocation out of confined environments. Analytic scaling arguments lead to the prediction that the translocation time scales like τNβ+ν2DR1+(1ν2D)/ν\tau\sim N^{\beta+\nu_{2D}}R^{1+(1-\nu_{2D})/\nu} for translocation out of a planar confinement between two walls with separation RR into a 3D environment, and τNβ+1R\tau \sim N^{\beta+1}R for translocation out of two strips with separation RR into a 2D environment. Here, NN is the chain length, ν\nu and ν2D\nu_{2D} are the Flory exponents in 3D and 2D, and β\beta is the scaling exponent of translocation velocity with NN, whose value for the present choice of parameters is β0.8\beta \approx 0.8 based on Langevin dynamics simulations. These scaling exponents improve on earlier predictions.Comment: 5 pages, 5 figures. To appear in Phys. Rev.

    Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors

    Full text link
    We study the collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family. In phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly), the coexistence of two spin-density waves gives rise to additional collective modes besides the Goldstone modes due to spontaneous translation and rotation symmetry breaking. These modes strongly affect the charge and spin response functions. We discuss some experimental consequences for the Bechgaard salts.Comment: Final version (LaTex, 8 pages, no figure), to be published in Europhys. Let

    Spacetime Defects: von K\'arm\'an vortex street like configurations

    Get PDF
    A special arrangement of spinning strings with dislocations similar to a von K\'arm\'an vortex street is studied. We numerically solve the geodesic equations for the special case of a test particle moving along twoinfinite rows of pure dislocations and also discuss the case of pure spinning defects.Comment: 9 pages, 2figures, CQG in pres

    Network synchronization: Optimal and Pessimal Scale-Free Topologies

    Full text link
    By employing a recently introduced optimization algorithm we explicitely design optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency towards disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting ``pessimal networks'' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.Comment: 11 pages, 4 figs, submitted to J. Phys. A (proceedings of Complex Networks 2007

    Quantum key distribution using a triggered quantum dot source emitting near 1.3 microns

    Full text link
    We report the distribution of a cryptographic key, secure from photon number splitting attacks, over 35 km of optical fiber using single photons from an InAs quantum dot emitting ~1.3 microns in a pillar microcavity. Using below GaAs-bandgap optical excitation, we demonstrate suppression of multiphoton emission to 10% of the Poissonian level without detector dark count subtraction. The source is incorporated into a phase encoded interferometric scheme implementing the BB84 protocol for key distribution over standard telecommunication optical fiber. We show a transmission distance advantage over that possible with (length-optimized) uniform intensity weak coherent pulses at 1310 nm in the same system.Comment: 4 pages, 4 figure
    corecore