138 research outputs found

    Normalization factors for magnetic relaxation of small particle systems in non-zero magnetic field

    Get PDF
    We critically discuss relaxation experiments in magnetic systems that can be characterized in terms of an energy barrier distribution, showing that proper normalization of the relaxation data is needed whenever curves corresponding to different temperatures are to be compared. We show how these normalization factors can be obtained from experimental data by using the Tln(t/τ0)T \ln(t/\tau_0) scaling method without making any assumptions about the nature of the energy barrier distribution. The validity of the procedure is tested using a ferrofluid of Fe_3O_4 particles.Comment: 5 pages, 6 eps figures added in April 22, to be published in Phys. Rev. B 55 (1 April 1997

    Magnetic behaviour of ferromagnets with random anisotropy

    Get PDF
    This article reports on a magnetometric study of the effects of diluted local random anisotropy in a ferromagnetic Fe80B20 amorphous matrix. In the low‐temperature and low‐field regime the samples, Fe74RE6B20 (RE=Nd, Ce), show a very rich behavior as a consequence of the competition between, and different dependence on T, of the correlation length associated with local random anisotropy and exchange interactions. In the high‐field regime (Happlied≥1.5 kOe) we observe ferromagnetic behavior with the saturation magnetization varying with temperature according to Bloch’s law. The spin wave stiffness constant D could be determined and lies close to 100 meVÅ2

    Magnetic Field scaling of Relaxation curves in Small Particle Systems

    Get PDF
    We study the effects of the magnetic field on the relaxation of the magnetization of small monodomain non-interacting particles with random orientations and distribution of anisotropy constants. Starting from a master equation, we build up an expression for the time dependence of the magnetization which takes into account thermal activation only over barriers separating energy minima, which, in our model, can be computed exactly from analytical expressions. Numerical calculations of the relaxation curves for different distribution widths, and under different magnetic fields H and temperatures T, have been performed. We show how a \svar scaling of the curves, at different T and for a given H, can be carried out after proper normalization of the data to the equilibrium magnetization. The resulting master curves are shown to be closely related to what we call effective energy barrier distributions, which, in our model, can be computed exactly from analytical expressions. The concept of effective distribution serves us as a basis for finding a scaling variable to scale relaxation curves at different H and a given T, thus showing that the field dependence of energy barriers can be also extracted from relaxation measurements.Comment: 12 pages, 9 figures, submitted to Phys. Rev.

    Finite-Size and surface effects in maghemite nanoparticles: Monte Carlo simulations

    Get PDF
    Finite-size and surface effects in fine particle systems are investigated by Monte Carlo simulation of a model of a γ\gamma-Fe2_2O3_3 (maghemite) single particle. Periodic boundary conditions have been used to simulate the bulk properties and the results compared with those for a spherical shaped particle with free boundaries to evidence the role played by the surface on the anomalous magnetic properties displayed by these systems at low temperatures. Several outcomes of the model are in qualitative agreement with the experimental findings. A reduction of the magnetic ordering temperature, spontaneous magnetization, and coercive field is observed as the particle size is decreased. Moreover, the hysteresis loops become elongated with high values of the differential susceptibility, resembling those from frustrated or disordered systems. These facts are consequence of the formation of a surface layer with higher degree of magnetic disorder than the core, which, for small sizes, dominates the magnetization processes of the particle. However, in contradiction with the assumptions of some authors, our model does not predict the freezing of the surface layer into a spin-glass-like state. The results indicate that magnetic disorder at the surface simply facilitates the thermal demagnetization of the particle at zero field, while the magnetization is increased at moderate fields, since surface disorder diminishes ferrimagnetic correlations within the particle. The change in shape of the hysteresis loops with the particle size demonstrates that the reversal mode is strongly influenced by the reduced atomic coordination and disorder at the surface.Comment: Twocolumn RevTex format. 19 pages, 15 Figures included. Submitted to Phys. Rev.

    Surfactant effects in magnetite nanoparticles of controlled size

    Get PDF
    Abstract Magnetite Fe 3 O 4 nanoparticles of controlled size within 6 and 20 nm in diameter were synthesised by thermal decomposition of an iron organic precursor in an organic medium. Particles were coated with oleic acid. For all samples studied, saturation magnetisation M s is size-independent, and reaches a value close to that expected for bulk magnetite, in contrast to results in small particle systems for which M s is usually much smaller due to surface spin disorder. The coercive field for the 6 nm particles is in agreement with coherent rotation, taking the bulk magnetocrystalline anisotropy into account. Both results suggest that the oleic acid molecules covalently bonded to the nanoparticle surface yield a strong reduction in the surface spin disorder. However, although the saturated state may be similar, the approach to saturation is different and, in particular, the high-field differential susceptibility is one order of magnitude larger than in bulk materials. The relevance of these results in biomedical applications is discussed.

    Enhancement of the magnetic anisotropy of nanometer-sized Co clusters: influence of the surface and of the inter-particle interactions

    Full text link
    We study the magnetic properties of spherical Co clusters with diameters between 0.8 nm and 5.4 nm (25 to 7500$ atoms) prepared by sequential sputtering of Co and Al2O3. The particle size distribution has been determined from the equilibrium susceptibility and magnetization data and it is compared to previous structural characterizations. The distribution of activation energies was independently obtained from a scaling plot of the ac susceptibility. Combining these two distributions we have accurately determined the effective anisotropy constant Keff. We find that Keff is enhanced with respect to the bulk value and that it is dominated by a strong anisotropy induced at the surface of the clusters. Interactions between the magnetic moments of adjacent layers are shown to increase the effective activation energy barrier for the reversal of the magnetic moments. Finally, this reversal is shown to proceed classically down to the lowest temperature investigated (1.8 K).Comment: 13 figures submitted to Phys. Rev.

    Magnetic relaxation in La0.250Pr0.375Ca0.375MnO3 with varying phase separation

    Full text link
    We have studied the magnetic relaxation properties of the phase-separated manganite compound La0.250Pr0.375Ca0.375MnO3 . A series of polycrystalline samples was prepared with different sintering temperatures, resulting in a continuous variation of phase fraction between metallic (ferromagnetic) and charge-ordered phases at low temperatures. Measurements of the magnetic viscosity show a temperature and field dependence which can be correlated to the static properties. Common to all the samples, there appears to be two types of relaxation processes - at low fields associated with the reorientation of ferromagnetic domains and at higher fields associated with the transformation between ferromagnetic and non-ferromagnetic phases.Comment: 30 pages with figures, PDF, accepted to be published in Physical Review

    Live birth rates and perinatal outcomes when all embryos are frozen compared with conventional fresh and frozen embryo transfer: a cohort study of 337,148 in vitro fertilisation cycles

    Get PDF
    BACKGROUND: It is not known whether segmentation of an in vitro fertilisation (IVF) cycle, with freezing of all embryos prior to transfer, increases the chance of a live birth after all embryos are transferred. METHODS: In a prospective study of UK Human Fertilisation and Embryology Authority data, we investigated the impact of segmentation, compared with initial fresh embryo followed by frozen embryo transfers, on live birth rate and perinatal outcomes. We used generalised linear models to assess the effect of segmentation in the whole cohort, with additional analyses within women who had experienced both segmentation and non-segmentation. We compared rates of live birth, low birthweight (LB
    corecore