36 research outputs found

    Gauge-invariant quantum gravitational corrections to correlation functions

    Get PDF
    A recent proposal for gauge-invariant observables in inflation [R. Brunetti et al., JHEP 1608 (2016) 032] is examined. We give a generalisation of their construction to general background spacetimes. In flat space, we calculate one-loop graviton corrections to a scalar two-point function in a general gauge for the graviton. We explicitely show how the gauge-dependent terms cancel between the usual self-energy contributions and the additional corrections inherent in these observables. The one-loop corrections have the expected functional form, contrary to another recently studied proposal for gauge-invariant observables [M. B. Fröb, Class. Quant. Grav. 35 (2018) 035005] where this is not the case. Furthermore, we determine the one-loop graviton corrections to the four-point coupling of the gauge-invariant scalar field, and the corresponding running of the coupling constant induced by graviton loops. Interestingly, the β function is negative for all values of the non-minimal coupling of the scalar field to curvature

    Propagators for gauge-invariant observables in cosmology

    Get PDF
    We make a proposal for gauge-invariant observables in perturbative quantum gravity in cosmological spacetimes, building on the recent work of Brunetti et al. [JHEP 08 (2016) 032]. These observables are relational, and are obtained by evaluating the field operator in a field-dependent coordinate system. We show that it is possible to define this coordinate system such that the non-localities inherent in any higher-order observable in quantum gravity are causal, i.e., the value of the gauge-invariant observable at a point x only depends on the metric and inflation perturbations in the past light cone of x. We then construct propagators for the metric and inflaton perturbations in a gauge adapted to that coordinate system, which simplifies the calculation of loop corrections, and give explicit expressions for relevant cases: matter- and radiation-dominated eras and slow-roll inflation

    Analytical approximation of the exterior gravitational field of rotating neutron stars

    Full text link
    It is known that B\"acklund transformations can be used to generate stationary axisymmetric solutions of Einstein's vacuum field equations with any number of constants. We will use this class of exact solutions to describe the exterior vacuum region of numerically calculated neutron stars. Therefore we study how an Ernst potential given on the rotation axis and containing an arbitrary number of constants can be used to determine the metric everywhere. Then we review two methods to determine those constants from a numerically calculated solution. Finally, we compare the metric and physical properties of our analytic solution with the numerical data and find excellent agreement even for a small number of parameters.Comment: 9 pages, 10 figures, 3 table

    Quantum corrections for spinning particles in de Sitter

    Get PDF
    We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalar Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant

    Nonperturbative semiclassical stability of de Sitter spacetime for small metric deviations

    Get PDF
    We consider the linearized semiclassical Einstein equations for small deviations around de Sitter spacetime including the vacuum polarization effects of conformal fields. Employing the method of order reduction, we find the exact solutions for general metric perturbations (of scalar, vector and tensor type). Our exact (nonperturbative) solutions show clearly that in this case de Sitter is stable with respect to small metric deviations and a late-time attractor. Furthermore, they also reveal a breakdown of perturbative solutions for a sufficiently long evolution inside the horizon. Our results are valid for any conformal theory, even self-interacting ones with arbitrarily strong coupling

    Infrared divergences for free quantum fields in cosmological spacetimes

    Get PDF
    We investigate the nature of infrared divergences for the free graviton and inflaton two-point functions in flat Friedman-Lema\^{\i}tre-Robertson-Walker spacetime. These divergences arise because the momentum integral for these two-point functions diverges in the infrared. It is straightforward to see that the power of the momentum in the integrand can be increased by 22 in the infrared using large gauge transformations, which are sufficient for rendering these two-point functions infrared finite for slow-roll inflation. In other words, if the integrand of the momentum integral for these two-point functions behaves like p−2νp^{-2\nu}, where pp is the momentum, in the infrared, then it can be made to behave like p−2ν+2p^{-2\nu+2} by large gauge transformations. On the other hand, it is known that, if one smears these two-point functions in a gauge-invariant manner, the power of the momentum in the integrand is changed from p−2νp^{-2\nu} to p−2ν+4p^{-2\nu+4}. This fact suggests that the power of the momentum in the integrand for these two-point functions can be increased by 44 using large gauge transformations. In this paper we show that this is indeed the case. Thus, the two-point functions for the graviton and inflaton fields can be made finite by large gauge transformations for a large class of potentials and states in single-field inflation.Comment: 21 pages, no figure

    Quantum gravitational corrections for spinning particles

    Get PDF
    We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well-known, and the same corrections due to massless minimally coupled scalars [Class. Quant. Grav. 27 (2010) 245008], massless non-conformal scalars [Phys. Rev. D 87 (2013) 104027] and massive scalars, fermions and vector bosons [Phys. Rev. D 91 (2015) 064047] have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppressed in comparison to the corrections from massless fields, as one would expect. However, a surprising result of our analysis is that close to the particle itself, on distances comparable to the Compton wavelength of the massive fields running in the loops, these corrections can be enhanced with respect to the massless case

    Compactly supported linearised observables in single-field inflation

    Get PDF
    We investigate the gauge-invariant observables constructed by smearing the graviton and inflaton fields by compactly supported tensors at linear order in general single-field inflation. These observables correspond to gauge-invariant quantities that can be measured locally. In particular, we show that these observables are equivalent to (smeared) local gaugeinvariant observables such as the linearisedWeyl tensor, which have better infrared properties than the graviton and inflaton fields. Special cases include the equivalence between the compactly supported gauge-invariant graviton observable and the smeared linearised Weyl tensor in Minkowski and de Sitter spaces. Our results indicate that the infrared divergences in the tensor and scalar perturbations in single-field inflation have the same status as in de Sitter space and are both a gauge artefact, in a certain technical sense, at tree level
    corecore