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Abstract. We investigate the gauge-invariant observables constructed by smearing the gravi-
ton and inflaton fields by compactly supported tensors at linear order in general single-field
inflation. These observables correspond to gauge-invariant quantities that can be measured
locally. In particular, we show that these observables are equivalent to (smeared) local gauge-
invariant observables such as the linearised Weyl tensor, which have better infrared properties
than the graviton and inflaton fields. Special cases include the equivalence between the com-
pactly supported gauge-invariant graviton observable and the smeared linearised Weyl tensor
in Minkowski and de Sitter spaces. Our results indicate that the infrared divergences in the
tensor and scalar perturbations in single-field inflation have the same status as in de Sitter
space and are both a gauge artefact, in a certain technical sense, at tree level.
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1 Introduction

Recently inflationary cosmological models [1–5] have been studied extensively since experi-
mental evidence has been accumulating to support inflation (see, e. g., the recent observations
reported in [6–8]). In these models, the graviton and inflaton fields, or tensor and scalar per-
turbations, suffer from infrared (IR) divergences [9, 10]. However, the physical significance of
those divergences has been debated for some time, and various methods to deal with them
have been proposed [11–31]. Although most researchers argue that these IR divergences are
not observable at tree level and that the problems only arise at higher order, it is recognised
that the IR divergences of the tree-level correlators of the tensor and scalar perturbations
are responsible for the IR problems at higher order. Therefore, it will be useful to thoroughly
understand the nature of the IR divergences, and the related issues of long-distance and late-
time (secular) growth of the two-point correlators for the tensor and scalar perturbations at
linear order.

An important issue in understanding IR divergences in a generally covariant theory,
such as inflationary cosmological models, is gauge invariance. Only gauge-invariant quan-
tities can be observed, and for this reason they are often called simply observables. Since
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physical observations are mostly local, it is useful to discuss observables that are defined in
a compact spacetime region. Although the metric and other perturbations themselves are
not gauge invariant, one can construct compactly supported and gauge-invariant observables
by smearing them by compactly supported functions, or test functions, satisfying certain
conditions. An observable of this type has been used recently to discuss quantisation of pure
linearised gravity in spacetimes with a positive cosmological constant [32], as well as for the
quantisation of the linearised graviton-inflaton system on arbitrary backgrounds, including
those with FLRW symmetry [33].

In this paper we study similar observables in single-field inflation, obtained by smearing
the graviton and inflaton fields by test functions which satisfy a condition ensuring gauge
invariance. In particular, we show that these observables are equivalent to a collection of
smeared local gauge-invariant fields, defined at each spacetime point1, such as the linearised
Weyl tensor. In other words, we show that the graviton and inflaton fields smeared in a
gauge-invariant manner contain exactly the same information as certain local gauge-invariant
fields. These local fields have better IR behaviour than the graviton and inflaton fields upon
quantisation. We find that, as a result, the compactly supported gauge-invariant graviton-
inflaton quantum correlators are IR finite, decay for large spacelike separations, and have no
secular growth at late times. For the special cases of Minkowski and de Sitter spaces, the
graviton smeared in a gauge-invariant manner is equivalent to the smeared linearised Weyl
tensor, as already shown in [34].

The rest of the paper is organised as follows: in section 2, we review linear perturbations
in single-field inflation and present some formulae useful later, referring to appendix A, which
presents some facts related to the conformal transformation. In section 3, we show that
the observables obtained by smearing the graviton and inflaton fields in a gauge-invariant
manner are equivalent to certain (smeared) local gauge-invariant fields by using two theorems
established in appendices B and D. In section 4, we express these local gauge-invariant fields
in terms of the tensor perturbation and the Sasaki–Mukhanov variable, which describes the
scalar perturbation. In section 5 we examine the IR finiteness of the gauge-invariant graviton-
inflaton quantum correlation functions, and in section 6 we give their relation to the scalar
and tensor power spectra. Finally, we conclude the paper in section 7 with a discussion of
some of our results. In appendix C we give a proof of a well-known Poincaré lemma for
compactly supported divergence-free vector fields, and appendix E presents an attempt to
express the local gauge-invariant fields mentioned above as a linear perturbation of geometric
quantities. Our metric signature is mostly plus and we use natural units with ~ = c = 1.

2 Linearised perturbations in single-field inflation

The single-field inflationary model is described by the metric g̃µν and the inflaton field φ̃,
and its action is given by

S =
1

κ2

∫

R̃
√

−g̃ dnx − 1

2

∫

[

∇̃µφ̃∇̃µφ̃ + V (φ̃)
]
√

−g̃ dnx . (2.1)

A cosmological constant can be incorporated into the potential V (φ̃). We obtain the Einstein
equations as the Euler–Lagrange equation for g̃µν :

Ẽµν ≡ 2R̃µν − g̃µνR̃ − κ2T̃µν = 0 , (2.2)

1From now on we use the word “local” to mean “defined at each spacetime point” unless otherwise stated.
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where the stress tensor is given by

T̃µν ≡ ∇̃µφ̃∇̃ν φ̃ − 1

2
g̃µν

(

∇̃ρφ̃∇̃ρφ̃ + V (φ̃)
)

. (2.3)

The Euler-Lagrange equation for φ̃ is the scalar field equation,

F̃ ≡ ∇̃µ∇̃µφ̃ − 1

2
V ′(φ̃) = 0 . (2.4)

The background metric gµν is conformally flat and, thus, takes the form,

gµν = a2ηµν , (2.5)

where ηµν is the flat metric and the scale factor a(η) depends only on conformal time η.
Let us discuss some properties of the background fields that will be useful later. The

Hubble and deceleration parameters are defined by

H ≡ a′

a2
, (2.6a)

ǫ ≡ − H ′

H2a
, (2.6b)

respectively, where a prime denotes the derivative with respect to the conformal time η. We
also use later the other slow-roll parameter defined by

δ ≡ ǫ′

2Haǫ
. (2.7)

The background Riemann tensor can be found using equation (A.3a) as

Rµρνσ = H2[(gµνgρσ − gµσgνρ) + ǫ(tµtνgρσ − tρtνgµσ − tµtσgρν + tρtσgµν)] , (2.8)

where tµ ≡ a−1(∂/∂η)µ is the future-directed unit vector on the background spacetime. The
Ricci and scalar curvatures can readily be found from this formula as

R00 = −(n − 1)(1 − ǫ)H2a2 , (2.9a)

Rkl = (n − 1 − ǫ)H2a2δkl , (2.9b)

R = (n − 1)(n − 2ǫ)H2 , (2.9c)

where k, l, . . . are space indices. Then, from the space and time components of the Einstein
equations (2.2) for the background fields one finds

κ2V (φ) = 2(n − 2)(n − 1 − ǫ)H2 , (2.10a)

κ2(φ′)2 = 2(n − 2)ǫH2a2 . (2.10b)

The background scalar field φ satisfies the following field equation resulting from (2.4):

φ′′ + (n − 2)Haφ′ +
1

2
a2V ′(φ) = 0 . (2.11)

We consider perturbations around this background, with the full metric g̃µν and scalar
field φ̃ decomposed as

g̃µν = gµν + g(1)
µν , (2.12a)
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φ̃ = φ + φ(1) , (2.12b)

and linearise the field equations (2.2) and (2.4). The linear parts of the equations F̃ = 0 and
Ẽµν = 0 are

F (1) ≡
(

∇µ∇µ − 1

2
V ′′(φ)

)

φ(1) −
(

∇µgµν
(1) − 1

2
∇νg(1)

)

∇νφ − gµν
(1)∇µ∇νφ = 0 (2.13)

and

E(1)
µν ≡ 2∇ρ∇(µg

(1)
ν)ρ − ∇ρ∇ρg(1)

µν − ∇µ∇νg(1) − gµν

(

∇ρ∇σg(1)
ρσ − ∇ρ∇ρg(1)

)

+ gρσ
(1)(Rρσgµν − gρµgσνR) − κ2T (1)

µν = 0 ,
(2.14)

where the linear part of the stress tensor is given by

T (1)
µν = 2∇(µφ∇ν)φ

(1) − 1

2
g(1)

µν (∇ρφ∇ρφ + V (φ))

− 1

2
gµν

(

2gρσ∇ρφ∇σφ(1) − gρσ
(1)∇ρφ∇σφ + V ′(φ)φ(1)

)

.
(2.15)

In these equations the indices are raised and lowered by the background metric gµν , and the
covariant derivative ∇µ is compatible with it: ∇µgνλ = 0.

The linearised gauge transformation of any tensor X̃αβ···γ with respect to the vector ξµ

is its Lie derivative with respect to ξµ, which we denote by LξX̃αβ···γ . Thus, to first order
we have

δg(1)
µν = Lξgµν = 2∇(µξν) , (2.16a)

δφ(1) = Lξφ = ξα∇αφ . (2.16b)

Suppose now that X̃αβ···γ is a tensor constructed from g̃µν and φ̃. Suppose further that, upon
substitution of (2.12), it can be written as

T̃αβ···γ = Tαβ···γ + T
(1)
αβ···γ (2.17)

to first order in g
(1)
µν and φ(1), where Tαβ···γ and T

(1)
αβ···γ are of zeroth and first order in these

fields, respectively. Then, under the gauge transformation (2.16) one has [35]

δT
(1)
αβ···γ = LξTαβ···γ . (2.18)

Thus T
(1)
αβ···γ is gauge invariant if LξTαβ···γ = 0, which in particular is the case if the back-

ground value vanishes: Tαβ···γ = 0. In particular, δF (1) = LξF and δE
(1)
µν = LξEµν , and

hence the linear quantities F (1) and E
(1)
µν are gauge invariant if the background equations,

Eµν = 0 and F = 0, are satisfied, which we will assume from now on. Later on, a Bianchi
identity for these quantities will also be useful, which we obtain by linearising the identity

∇̃µẼµν = −κ2∇̃µT̃µν = −κ2F̃ ∇̃ν φ̃ (2.19)

[following from the usual Bianchi identity ∇̃µ
(

2R̃µν − g̃µνR̃
)

= 0] and using the background
field equations Eµν = 0 and F = 0. This results in

∇µE(1)
µν = −κ2F (1)∇νφ , (2.20)

which is identically satisfied for arbitrary perturbations g
(1)
µν and φ(1).
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3 Equivalence of the compactly supported graviton-inflaton observables

and local gauge-invariant observables

The graviton and inflaton perturbations, g
(1)
µν (x) and φ(1)(x), become singular upon quanti-

sation. For example, their two-point correlation functions (correlators) are divergent when
the two points coincide. For this reason, it is convenient to consider the quantities obtained
by smearing them over a compact region in spacetime. Thus we define

I(f, χ) ≡
∫

(

fµνg(1)
µν + 2χφ(1)

)√−g dnx , (3.1)

where fµν and χ are smooth and of compact support, and fµν is symmetric. (Tensors will be
assumed to be smooth from now on unless otherwise stated.) In fact, quantities of this type are
the fundamental objects in the algebraic formulation of quantum field theory [36, 37]. These
objects have an additional advantage that they can readily be made gauge invariant (under

linear gauge transformations) without sacrificing locality, unlike the original fields g
(1)
µν (x) and

φ(1)(x). To see this, we note that the change of I(f, χ) under the gauge transformation (2.16)
is given by

δI(f, χ) = 2

∫

(fµν∇µξν + χξµ∇µφ)
√−g dnx

= 2

∫

ξν(−∇µfµν + χ∇νφ)
√−g dnx ,

(3.2)

where the surface term in the second line is absent because fµν is compactly supported.
Thus, the integral I(f, χ) is a gauge-invariant observable whenever the following condition is
satisfied:

∇µfµν = χ∇νφ . (3.3)

We impose this condition from now on so that I(f, χ) is gauge invariant. This observable
(with χ = 0) was used in [32] to discuss quantisation of linearised gravity in general Einstein
spacetimes with a positive cosmological constant. The analysis of ref. [32] on the basis of
I(f, χ) was later generalised to the linearised graviton-inflaton system on arbitrary on-shell
backgrounds, including those with FLRW symmetry [33].

Although we motivated the observable I(f, χ) as a regularised version of local fields,
after imposing the condition (3.3) it is impossible to take the limit where the compactly
supported functions fµν and χ become local, i. e., a constant tensor multiplying a Dirac δ
distribution supported at a point. If such a limit were possible, the observable I(f, χ) would

reduce to a linear combination of g
(1)
αβ and φ(1), which cannot be gauge invariant, contradicting

the gauge invariance of I(f, χ). One might argue that a gauge-invariant graviton field g
(1)
αβ

can be defined by fixing the gauge completely, but in general a complete gauge fixing involves
field transformations which are not compactly supported. For example, to extract the usual
gauge-invariant Bardeen potentials ΦA/H from a general metric perturbation one has to solve
the equations2

△2ΦA =
1

2
△2h00 − (∂η + Ha) △∂kh0k +

1

2(n − 2)
(∂η + Ha)∂η

[

(n − 1)∂k∂lhkl − δkl △hkl

]

,

(3.4a)

2These equations can be derived from the decomposition (4.1) of the metric perturbation for general Xµ,
noting that S = 2ΦA and Σ = 2ΦH.
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△2ΦH =
1

2(n − 2)
δkl △2hkl − 1

2(n − 2)
△∂k∂lhkl + Ha △∂kh0k

− (n − 1)

2(n − 2)
Ha∂k∂lh′

kl +
1

2(n − 2)
Haδkl △h′

kl ,

(3.4b)

where ∂k ≡ δkl∂l, △ ≡ ∂k∂k, and the field hµν is the rescaled perturbation defined by

hµν ≡ a−2g(1)
µν , (3.5)

which is usually employed in cosmology. Therefore, unless the right-hand sides are of the
form △2f for some compactly supported function f (which will not be the case in general
even if hµν has compact support), the Bardeen potentials will be non-local. Nevertheless, we
will argue at the end of this section that a certain local limit of I(f, χ) does exist, although
it is different from the naïve one.

Writing the gauge invariance condition (3.3) as

1

an+2
∂µ

(

an+2fµν
)

+
1

a
tν
(

Haf + φ′χ
)

= 0 , (3.6)

where f ≡ gµνfµν , we can readily find some solutions to this equation. Let uαµβν be any
compactly supported tensor which is antisymmetric in the first and last two indices, and
symmetric under the pairwise exchange (αµ) ↔ (βν)3. Then a solution to equation (3.6) can
be given as

fµν = a−n−2∂α∂βuαµβν , (3.7a)

χ = −Ha

φ′
f . (3.7b)

The main technical result of this paper is that this is actually the general solution on-shell,
i. e., any observable I(f, χ) can be represented with fµν and χ of the form (3.7) if the fields

g
(1)
µν and φ(1) satisfy the field equations F (1) = 0 (2.13) and E

(1)
µν = 0 (2.14). Moreover, the

support of the tensor uαµβν can be chosen to be close to the support of the original fµν

and χ in the technical sense explained in appendix B. We first explain this result and its
consequences for pure linearised gravity in Minkowski and de Sitter spaces [34].

3.1 The Minkowski case

We let χ = 0 and consider

I0(f) ≡
∫

fµνg(1)
µν

√−g dnx . (3.8)

(Here we have
√−g = 1 in Cartesian coordinates, of course.) The condition (3.3) for the gauge

invariance of I0(f) becomes ∂µfµν = 0. Thus, we want to show that a compactly supported
divergence-free symmetric tensor fµν can always be expressed as fµν = ∂α∂βuαµβν , where the
compactly supported tensor uαµβν has the symmetry properties and support stated before.
This result is proved in appendix B; it is related to the so-called Calabi complex [38], and
a slightly different proof can be found in ref. [34]. It is analogous to the compact-support

3Since fµν in equation (3.7) does not depend on the part of uαµβν totally antisymmetric in the last three
indices, we may also require uα[µβν] = 0. In fact, the uαµβν we construct in appendix B has this property.
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version of the Poincaré lemma for p-forms: on an n-dimensional Euclidean space a closed
p-form of compact support with 1 ≤ p ≤ n − 1 is exact. Thus, in Minkowski space we have

I0(f) = −1

2

∫

uαµβνR
(1)
αµβν dnx , (3.9)

where
R

(1)
αµβν ≡ ∂α∂[νg

(1)
β]µ − ∂µ∂[νg

(1)
β]α (3.10)

is the linearised Riemann tensor. It is traceless because the linearised Ricci tensor vanishes
on-shell in linearised gravity in Minkowski space. Thus, we have on-shell

I0(f) = −1

2

∫

uαµβνC
(1)
αµβν dnx , (3.11)

where C
(1)
αµβν is the linearised Weyl tensor, which is the traceless part of R

(1)
αµβν . That is, the

graviton observable I0(f) is equivalent to the smeared linearised Weyl tensor.

3.2 The de Sitter case

The de Sitter case is achieved by choosing V (φ) = 2κ−2(n − 2)(n − 1)H2, with H a positive
constant, and φ′ = 0 [see equation (2.10)]. As in the Minkowski case, we consider the pure
graviton observable I0(f), with ∇µfµν = 0. A useful observation, which will be generalised in

the next subsection, is that the observable I0(f) is invariant on-shell [i. e., when E
(1)
µν

(

g(1)
)

=

0] under the transformation fµν → f̌µν ≡ fµν + δfµν with δfµν = E(1)µν(v), where vµν is
any compactly supported tensor. This holds because

I0(f̌) = I0(f) +

∫

E(1)µν(v)g(1)
µν

√−g dnx

= I0(f) +

∫

vµνE(1)
µν

(

g(1)
)√−g dnx

= I0(f) .

(3.12)

Note also that ∇µf̌µν = ∇µE(1)µν(v) = 0, as follows from the Bianchi identity (2.20) taking
into account that φ = 0 in de Sitter. Now, this equation can be written as [see equation (3.6)]

∂µ

(

an+2f̌µν
)

+ an+2tνHf̌ = 0 . (3.13)

Hence, if the tensor f̌µν is traceless (f̌ = 0), then an+2f̌µν will be divergence free with respect
to the flat metric, and the result of appendix B can be used. We now show that it is possible
to choose δfµν so that f̌µν = fµν + δfµν is traceless.

We find from equation (2.14) that

E(1)
µν (v) ≡ 2∇(µ∇ρvν)ρ − ∇ρ∇ρvµν − ∇µ∇νv − gµν(∇ρ∇σvρσ − ∇ρ∇ρv)

+ (n − 3)H2gµνv + 2H2vµν ,
(3.14)

where we changed the order of some derivatives using Rαβγδ = H2(gαγgβδ − gαδgβγ). The
trace reads

gµνE(1)
µν (v) = (2 − n)(∇ρ∇σvρσ − ∇ρ∇ρv) + (n − 1)(n − 2)H2v . (3.15)
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Thus by choosing

vµν =
1

(n − 2)H2

(

fµν − 1

n − 1
gµνf

)

, (3.16)

and using ∇µfµν = 0, we find δf = gµνE
(1)
µν (v) = −f . Thus, we have f̌ = f + δf = 0,

and ∇µf̌µν = 0 as shown above. From equation (3.13), we find that ∂µ

(

an+2f̌µν
)

= 0, and

hence by the results of appendix B there exists a compactly supported tensor uαµβν with the
symmetries of the Riemann tensor such that

an+2f̌µν = ∂α∂βuαµβν . (3.17)

Hence

I0(f) = I0(f̌) = −1

2

∫

uαµβν
(

∂α∂[νhβ]µ − ∂µ∂[νhβ]α

)

dnx , (3.18)

with the rescaled perturbation hµν defined by equation (3.5).
The tensor ∂α∂[νhβ]µ − ∂µ∂[νhβ]α is gauge invariant, but it is not the linearised Weyl

tensor even on-shell because its trace does not vanish. In order to express the observable
I0(f) in terms of the linearised Weyl tensor, we first separate out the traceless part wαµβν of
uαµβν as

uαµβν = wαµβν +
2

n − 2
ηα[βuν]µ − 2

n − 2
ηµ[βuν]α +

2

(n − 1)(n − 2)
ηα[βην]µu (3.19)

with
uµν ≡ ηαβuαµβν , u ≡ ηµνuµν . (3.20)

Substitution of equation (3.19) into (3.17) yields

an+2f̌µν = ∂α∂βwαµβν +
1

n − 2
sµν , (3.21)

where

sµν = ∂ρ∂ρuµν − 2∂(µ∂ρuν)ρ +
1

n − 1
(∂µ∂νu − ηµν∂ρ∂ρu) . (3.22)

Here indices are raised and lowered by ηµν . Next we show that the second term of (3.21) can
be written as ∂α∂βqαµβν , where qαµβν has the same symmetries as wαµβν and is traceless.

Since 0 = an+2f̌ = ηµν∂α∂βuαµβν = ∂α∂βuαβ , the tensor uµν can be expressed as

uµν = ∂ρ(W µρν + W νρµ) , (3.23)

where W µρν is antisymmetric in the last two indices and has support close to the support of
uµν , as shown in appendix C. Define

Kαµβν ≡ 1

n − 3

(

∂βW ναµ − ∂νW βαµ + ∂αW µβν − ∂µW αβν
)

. (3.24)

The tensor Kαµβν is antisymmetric in the first two and last two indices, and symmetric under
the exchange of these pairs of indices. Define qαµβν to be the traceless part of this tensor.
Then a straightforward calculation shows that

∂α∂βqαµβν =
1

n − 2
sµν . (3.25)
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Hence, defining a traceless tensor by

ǔαµβν ≡ wαµβν + qαµβν , (3.26)

we have from equation (3.21) that

an+2f̌µν = ∂α∂βǔαµβν . (3.27)

By substituting this expression into equation (3.18) we obtain

I0(f) = −1

2

∫

ǔαµβν
(

∂α∂[νhβ]µ − ∂µ∂[νhβ]α

)

dnx

= −1

2

∫

ǔαµβνC
(1)flat
αµβν dnx ,

(3.28)

where C
(1)flat
αµβν is the linearised Weyl tensor in flat space with metric perturbation hµν . This

follows from the fact that C
(1)flat
αµβν is the traceless part of the linearised Riemann tensor

∂α∂[νhβ]µ − ∂µ∂[νhβ]α, and that ǔαµβν is traceless.

Now, the full Weyl tensor C̃αµβν for the metric g̃µν = a2(ηµν + hµν) is related to the
Weyl tensor C̃flat

αµβν for the metric ηµν + hµν as C̃αµβν = a2C̃flat
αµβν (see, e. g., [39]). Since they

both vanish for the background metric, the linearised Weyl tensors are also related in this
manner:

C
(1)
αµβν = a2C

(1)flat
αµβν . (3.29)

By substituting this relation into equation (3.28), we finally obtain

I0(f) = −1

2

∫

ûαµβνC
(1)
αµβν

√−g dnx , (3.30)

where ûαµβν ≡ a−(n+2)ǔαµβν since
√−g = an. Thus, the compactly supported graviton

observable I0(f) in de Sitter space is equivalent to the linearised Weyl tensor, which is gauge
invariant because the background Weyl tensor vanishes [35].

3.3 The general case

Now we study the observable I(f, χ) in a general FLRW spacetime assuming φ′ 6= 0. The
test functions fµν and χ in the observable I(f, χ) (3.1), which are compactly supported
by definition, satisfy the equation (3.6). [Recall that this condition guarantees the gauge
invariance of I(f, χ).] We consider the transformation fµν → f̌µν ≡ fµν + δfµν , χ → χ̌ ≡
χ + δχ with

δfµν = E(1)µν(v, w) , (3.31a)

δχ = −κ2F (1)(v, w) , (3.31b)

where E(1)µν(v, w) and F (1)(v, w) are obtained by substituting g
(1)
µν → vµν and φ(1) → w

into E(1)µν and F (1) in equations (2.14) and (2.13), respectively. The observable I(f, χ) is
invariant under this transformation on-shell since

I(f̌ , χ̌) = I(f, χ) +

∫

[

E(1)
µν (v, w)gµν

(1) − 2κ2F (1)(v, w)φ(1)
]√−g dnx

= I(f, χ) +

∫

[

vµνE(1)
µν

(

g(1), φ(1)
)

− 2κ2wF (1)
(

g(1) ,φ(1)
)]√−g dnx

= I(f, χ) .

(3.32)
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From the background Bianchi identity (2.20)

∇µE(1)
µν (v, w) = −κ2F (1)(v, w)∇νφ , (3.33)

which holds for any vµν and w, we obtain ∇µδfµν = δχ∇νφ. Together with the gauge

invariance condition (3.3), this implies that ∇µf̌µν = χ̌∇νφ, which we write in the form

1

an+2
∂µ

(

an+2f̌µν
)

+
1

a
tν
(

Haf̌ + φ′χ̌
)

= 0 . (3.34)

In appendix D we show that if we choose

w = A(η)
2(n − 1)(n − 2)χ + κ

√

2(n − 2)ǫf

2κ2[(n − 2)(n − 1 − ǫ) + 2(n − 1)δ]
, (3.35a)

vµν = A(η)

(

fµν − 1

n − 1
gµνf

)

+
φ′

Ha
gµνw (3.35b)

with
A(η) =

a

(n − 2)H
(η0 − η) , (3.36)

where η0 is any constant, then Haf̌ + φ′χ̌ = 0. This and equation (3.34) imply

∂µ

(

an+2f̌µν
)

= 0 , (3.37a)

χ̌ = −Ha

φ′
f̌ . (3.37b)

We emphasise that this is an exact result for an arbitrary potential V (φ), and that no
approximation is necessary for it to be valid. Then, by appendix B there is a tensor uαµβν

with the symmetry of the Riemann tensor such that

f̌µν = a−(n+2)∂α∂βuαµβν . (3.38)

Since the tensor f̌µν is not necessarily traceless this time, the observable I(f, χ) =

I
(

f̌ , χ̌
)

cannot be reduced to the linearised Weyl tensor alone. To identify the Weyl-tensor

component we separate out the traceless part wαµβν of uαµβν as in equation (3.19). Then it

follows that on-shell, if the field equations (2.14) and (2.13) for g
(1)
µν and φ(1) are satisfied, we

have, noting equation (3.37b),

I(f, χ) =

∫

an+2fµν

(

hµν − 2Ha

φ′
ηµνφ(1)

)

dnx

=

∫

uαµβν∂α∂β

(

hµν − 2Ha

φ′
ηµνφ(1)

)

dnx

= −1

2

∫

wαµβνC
(1)flat
αµβν dnx −

∫

uµνCµν dnx ,

(3.39)

where the flat-space linearised Weyl tensor C
(1)flat
αµβν is defined in the previous subsection and

where

Cµν ≡ 1

n − 2

(

2∂(µ∂βhν)β − ∂2hµν − ∂µ∂νh
)

− 1

(n − 1)(n − 2)
ηµν

(

∂α∂βhαβ − ∂2h
)

+ 2∂µ∂ν

(

Ha

φ′
φ(1)

)

.

(3.40)

– 10 –



The last equality in equation (3.39) follows because wαµβν is traceless, and equation (3.29)
holds here as well. Hence by defining

ŵαµβν ≡ a−(n+2)wαµβν , (3.41a)

ûµν ≡ a−nuµν , (3.41b)

we find

I(f, χ) = −1

2

∫

ŵαµβνC
(1)
αµβν

√−g dnx −
∫

ûµνCµν
√−g dnx . (3.42)

The linearised Weyl tensor C
(1)
αµβν is gauge invariant as in the de Sitter case because

the background Weyl tensor vanishes. The gauge invariance of Cµν follows from that of
I(f, χ), but can also be checked explicitly. For this, note that the gauge transformation can
be expressed as

δhµν = 2∂(µξν) − 2Haηµνξ0 , (3.43a)

δφ(1) = −φ′ξ0 . (3.43b)

Interestingly, the tensor Cµν is invariant under two separate transformations δ1 and δ2, given
by δ1hµν = 2∂(µξν), δ1φ(1) = 0 and δ2hµν = −2Haηµνξ0, δ2φ(1) = −φ′ξ0, respectively. We
have attempted to express the tensor Cµν as the linear perturbation of a geometric quantity,
and have succeeded in doing so except for the component C00, as shown in appendix E.

We have argued before that it does not make sense to consider local (Dirac δ) limits of the
test tensors fµν and χ in I(f, χ), because of the differential gauge-invariance constraint (3.3)
which they have to satisfy. However, given I(f, χ) in the equivalent form (3.42), one may now
consider local limits of the test tensors ŵαµβν and ûµν , i. e., one can consider the limiting
case where these test tensors are given by constant tensors multiplying a Dirac δ distribution
supported at a point. From these ŵαµβν and ûµν one can obtain the corresponding fµν

and χ by reversing the above construction, which will give particular derivatives of the δ
distribution contracted with constant tensors for fµν and χ. This statement is equivalent
to saying that the graviton and inflaton perturbations are only locally observable in the
particular differentiated form in which they appear in the linearised Weyl tensor and in Cµν ,
but not directly. In particular, the linearised Ricci scalar of constant-field hypersurfaces R,
given by equation (E.18), appears as the spatial trace of Cµν :

δijCij =
1

n − 2

[

∂i∂jhij − △(h + h00)
]

+ 2 △
(

Ha

φ′
φ(1)

)

=
1

n − 2
a2R(1) . (3.44)

4 Local observables in terms of tensor and scalar perturbations

In the previous section we expressed our compactly supported observable I(f, χ) in terms

of the local observables C
(1)
αµβν and Cµν . In this section we express these local observables in

terms of the tensor perturbation and Sasaki–Mukhanov variable, which describes the scalar
perturbation. We follow the notation of ref. [40].

The metric and scalar-field perturbations that allow Fourier decomposition can be given
as

h00 = S + 2X ′
0 + 2HaX0 , (4.1a)

h0k = Vk + X ′
k + ∂kX0 , (4.1b)
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hkl = Hkl + δklΣ + 2∂(kXl) − 2HaδklX0 , (4.1c)

φ(1) = Ψ − X0φ′ . (4.1d)

The vector perturbation Vk is transverse and the tensor perturbation Hkl is transverse and
traceless. The gauge transformation (3.43) transforms Xµ as δXµ = ξµ. All other variables
on the right-hand side of equations (4.1) are gauge-invariant, even though they are in general

non-local functions of hµν and φ(1), unlike C
(1)
αµβν and Cµν . It is convenient to introduce the

Sasaki–Mukhanov variable Q as follows [41]:

Q ≡ 2Ha

φ′
Ψ − Σ , (4.2)

so that

φ(1) =
φ′

2Ha
(Σ + Q − 2HaX0) . (4.3)

The gauge-invariant variables in (4.1) satisfy the following field equations [40], which result

from E
(1)
µν = 0 and F (1) = 0:

∂2Hkl = (n − 2)HaH ′
kl , (4.4a)

Vk = 0 , (4.4b)

△Σ = −HaǫQ′ , (4.4c)

△S = −(n − 3)HaǫQ′ , (4.4d)

∂2Q = (n − 2 + 2δ)HaQ′ , (4.4e)

where △ ≡ δkl∂k∂l as before. On-shell, the linearised Weyl tensor C
(1)
αµβν is expressed in terms

of the tensor perturbation Hkl and the Sasaki–Mukhanov variable Q as [40]

C
(1)
0j0l =

a2

2

[

(n − 3)HaH ′
jl − △Hjl

]

− n − 3

2(n − 1)
Ha3ǫΠjlQ

′ , (4.5a)

C
(1)
0jkl = −a2∂[kH ′

l]j , (4.5b)

C
(1)
ijkl = a2

[

−∂i∂[kHl]j + ∂j∂[kHl]i + Ha
(

ηi[kH ′
l]j − ηj[kH ′

l]i

)]

− Ha3ǫ

n − 1

(

Πi[kηl]j − Πj[kηl]i

)

Q′ ,

(4.5c)

where Πkl is the traceless projection operator

Πkl = δkl − (n − 1)
∂k∂l

△ . (4.6)

Notice that the variables Hkl and Q are differentiated either once with respect to η or twice
with respect to space coordinates in equations (4.5).

Now we find an expression analogous to (4.5) for Cµν . Substituting the expansion of
hµν (4.1) and φ(1) (4.3) into equation (3.40), we find

C00 = Q′′ − 1

n − 1
△(S + Σ) , (4.7a)

C0k = ∂kQ′ − 1

n − 2
△Vk , (4.7b)
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Ckl = − 1

n − 2

(

∂2Hkl + 2∂(kV ′
l)

)

+ ∂k∂lQ − 1

(n − 1)(n − 2)
Πkl △(S + Σ) . (4.7c)

Using the equations of motion (4.4) to simplify these expressions on-shell we obtain

C00 = △Q −
(

n − 2 + 2δ − n − 2

n − 1
ǫ

)

HaQ′ , (4.8a)

C0k = ∂kQ′ , (4.8b)

Ckl = −HaH ′
kl + ∂k∂lQ +

1

n − 1
ΠklHaǫQ′ , (4.8c)

and we recover the well-known on-shell expression for the linearised Ricci scalar of constant-
field hypersurfaces (3.44)

R(1) = (n − 2)a−2δijCij = (n − 2)a−2 △Q . (4.9)

Notice that the variables Hkl and Q are again differentiated either once with respect to η or
twice with respect to space coordinates, as in the case of the linearised Weyl tensor (4.5).

This makes the IR behaviour of the correlators of C
(1)
αµβν and Cµν , and hence of I(f, χ), upon

quantisation much better than that for the variables Hkl or Q, as we shall see in the next
section.

5 Infrared behaviour of the compactly supported observable

To discuss the IR behaviour of the correlators of our compactly supported (quantum) ob-

servable I(f, χ), or, equivalently, that of the observables C
(1)
αµβν and Cµν , we first review the

quantisation of single-field inflation at linear order following [40].
We first write the field equations for Hkl and Q listed in equation (4.4) as

H ′′
kl + (n − 2)HaH ′

kl − △Hkl = 0 , (5.1a)

Q′′ + (n − 2 + 2δ)HaQ′ − △Q = 0 . (5.1b)

We then expand these fields as

Hkl(η,x) =

∫

∑

σ

e
(σ)
kl (p)a(p,σ)fp(η)eipx dn−1p

(2π)n−1
+ h.c. , (5.2a)

Q(η,x) =

∫

bpqp(η)eipx dn−1p

(2π)n−1
+ h.c. , (5.2b)

where e
(σ)
kl (p) are the polarisation tensors satisfying pke

(σ)
kl (p) = ηkle

(σ)
kl (p) = 0 and the

orthonormality condition e
(σ)
kl (p)e

(σ′)∗
kl (p) = 2δσσ′

. We have assumed rotational invariance
so that fp(η) and qp(η) depend only on p = |p| and not on the direction of p. For the

normalised commutation relations [a(p,σ), a†

(p′,σ′)] = (2π)n−1δσσ′δn−1(p − p′) and [bp, b†
p′ ] =

(2π)n−1δn−1(p − p′) to hold, the functions fp and qp need to satisfy the normalisation con-
ditions [40]

fp(η)f∗′
p (η) − f ′

p(η)f∗
p (η) = iκ2a2−n , (5.3a)

qp(η)q∗′
p (η) − q′

p(η)q∗
p(η) =

2iκ2a2−n

(n − 2)ǫ
. (5.3b)
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The vacuum state |0〉 is defined by ap|0〉 = bp|0〉 = 0 for all p. Then the correlation function
for the tensor perturbation is given by

∆H
ijkl(η, η′,

∣

∣x − x′
∣

∣) ≡ 〈0|Hij(η,x)Hkl(η
′,x′)|0〉

=

∫
(

2Pk(iPj)l − 2

n − 2
PijPkl

)

fp(η)f∗
p (η′)eip(x−x′) dn−1p

(2π)n−1
,

(5.4)

where

Pkl ≡ δkl − ∂k∂l

△ , (5.5)

and the correlation function for the Sasaki–Mukhanov variable reads

∆Q(η, η′,
∣

∣x − x′
∣

∣) ≡ 〈0|Q(η,x)Q(η′,x′)|0〉

=

∫

qp(η)q∗
p(η′)eip(x−x′) dn−1p

(2π)n−1
.

(5.6)

These correlators are IR divergent, i. e., the p-integral diverges in the IR in many applications,
most notably in the slow-roll approximation in single-field inflation. That is, fp(η) and qp(η)
diverge like p−(n−1)/2 or stronger as p → 0 in many applications, and thus the above Fourier
integrals are not convergent unless one introduces an IR cutoff.

For the compactly supported observable I(f, χ), or equivalently for C
(1)
αµβν and Cµν , the

fields Hkl and Q occur with one time derivative or two space derivatives, as we observed
before. This implies that the IR divergence of the correlation functions are reduced at least
by a factor of p4 as we now show. From the equations of motion (5.1) and the mode expan-
sion (5.2), it follows that the functions fp and qp satisfy

[

an−2(η)f ′
p(η)

]′
= −p2an−2(η)fp(η) , (5.7a)

[

ǫ(η)an−2(η)q′
p(η)

]′
= −p2ǫ(η)an−2(η)qp(η) . (5.7b)

We can solve these equations for small p2, where we can neglect the right-hand side in
comparison with the left-hand one because of the explicit factors of p2. This gives

qp(η) = iA(p)
[

1 + O
(

p2
)]

+ B(p)

[
∫

dη

ǫ(η)an−2(η)
+ O

(

p2
)

]

, (5.8a)

fp(η) = iC(p)
[

1 + O
(

p2
)]

+ D(p)

[
∫

dη

an−2(η)
+ O

(

p2
)

]

, (5.8b)

where without loss of generality we choose A(p) and C(p) to be real and positive, since
an overall phase factor affects neither the normalisation conditions (5.3) nor the correlation
functions (5.4) and (5.6). The normalisation conditions then imply

A(p)[B(p) + B∗(p)] =
2κ2

n − 2
+ O

(

p2
)

, (5.9a)

C(p)[D(p) + D∗(p)] = κ2 + O
(

p2
)

. (5.9b)

The choice of the quantum state determines A(p) and C(p) subject to this condition. For
the natural quantum state in many interesting applications, in particular for the Bunch–
Davies vacuum in slow-roll single-field inflationary models [42–44], A(p) and C(p) diverge
like p−(n−1)/2 or faster, leading to IR divergence of the correlators for Q and Hkl as explained
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above. This implies that the real parts of B(p) and D(p) tend to zero in this limit, and if
their imaginary parts also tend to zero (as happens for slow-roll inflationary models), they
do not cause any IR divergence. Therefore, the leading IR-divergent terms in the limit p → 0
are given by A(p) and C(p), which are annihilated by a derivative with respect to η, and
thus the leading terms in the p → 0 limit in q′

p(η) and f ′
p(η) are suppressed by a factor of p2

as compared to qp(η) and fp(η) themselves. The leading behaviour of the second-order space
derivatives of the mode functions qp(η)eipx and fp(η)eipx are obviously also suppressed by a
factor of p2. Since the variables Q and Hkl are differentiated once with respect to η or twice

with respect to x in the expression for C
(1)
αµβν and Cµν , the leading behaviour of their mode

functions in the limit p → 0 is thus suppressed by p2. This implies that the integrand of the

p-integration in the correlators for quantum operators C
(1)
αµβν and Cµν , and hence that for

I(f, χ), are suppressed by p4. This suppression is sufficient to make the correlator for I(f, χ)
IR finite in most applications relevant to the physics of the early universe.

To make these general considerations more accessible, let us study an example. Since
at tree level there are no UV divergences, we set n = 4 in the following. In the slow-roll
approximation of single-field inflation, one has

a(η) = a0(−η)− 1
1−ǫ , (5.10a)

H(η) =
1

(1 − ǫ)a0
(−η)

ǫ
1−ǫ , (5.10b)

ǫ(η) = ǫ0(−η)−2δ , (5.10c)

where a0 and ǫ0 are positive constants, to first order in ǫ and δ. We note that these relations
are exact for constant positive ǫ (and, consequently, with δ = 0) even if it is large. For the
mode functions, we then have [40]

fp(η) =

√
π

2
κ(1 − ǫ)H(η)(−η)

3
2 H

(1)
3
2

+ ǫ
1−ǫ

(−pη) , (5.11a)

qp(η) =

√
π

2
κ(1 − ǫ)

H(η)
√

ǫ(η)
(−η)

3
2 H

(1)
3
2

+ ǫ
1−ǫ

+δ
(−pη) , (5.11b)

again to first order in ǫ and δ. (These expressions and the results that follow are exact for
constant ǫ < 1.) The small p approximation of these functions can be found by using

H(1)
ν (z) =

J−ν(z) − e−νπiJν(z)

i sin νπ
, (5.12a)

Jν(z) =
1

Γ(1 + ν)

(z

2

)ν
[

1 + O
(

z2
)]

. (5.12b)

Thus, the coefficients in equation (5.8) in these models are given by

A(p) = −
κΓ

(

3
2 + ǫ

1−ǫ + δ
)

2
√

πǫ0 a0
p− 3

2
− ǫ

1−ǫ
−δ , (5.13a)

B(p) = −κ

[

1 − iπ

(

ǫ

1 − ǫ
+ δ

)] √
πǫ0 a0

Γ
(

3
2 + ǫ

1−ǫ + δ
)p

3
2

+ ǫ
1−ǫ

+δ , (5.13b)

C(p) = −
κΓ

(

3
2 + ǫ

1−ǫ

)

2
√

π a0
p− 3

2
− ǫ

1−ǫ , (5.13c)

– 15 –



D(p) = −κ

(

1 − iπ
ǫ

1 − ǫ

) √
π a0

Γ
(

3
2 + ǫ

1−ǫ

)p
3
2

+ ǫ
1−ǫ . (5.13d)

We note that these coefficients satisfy the properties mentioned before, with A(p) and C(p)
diverging as p → 0 and B(p) and D(p) vanishing in this limit. Thus, they lead to IR diver-
gences of the correlators for Q and Hkl (as long as ǫ+ δ ≥ 0 and ǫ ≥ 0, respectively), and one
time derivative or two space derivatives produce an extra factor of p4 in the integrand for the
p-integration for the correlators, rendering them IR finite (as long as ǫ

1−ǫ + δ < 2 and ǫ < 2
3 ,

respectively). The IR-finiteness condition is always satisfied in slow-roll inflation because we
have ǫ, δ ≪ 1.

For constant ǫ the correlators for Hkl and Q are IR divergent if
∣

∣

∣

3
2 + ǫ

1−ǫ

∣

∣

∣
≥ 3

2 , i. e., if

0 ≤ ǫ ≤ 3
2 , which includes the matter-dominated universe, ǫ = 3

2 . On the other hand the

correlators for I(f, χ) are IR divergent only for
∣

∣

∣

3
2 + ǫ

1−ǫ

∣

∣

∣
≥ 7

2 , i. e., for 2
3 ≤ ǫ ≤ 5

4 . Thus, the

correlators of I(f, χ) are IR finite for the matter (ǫ = 3
2) and radiation (ǫ = 2) dominated

universes. Even for 2
3 ≤ ǫ ≤ 5

4 , the conclusion of IR divergence assumes a choice of the mode
functions, and hence of the vacuum state, which respects the rescaling symmetry of the
field equation η → λη,x → λx (which we discuss below). Although this choice is generally
accepted as the right choice for slow-roll inflation, it may not be the right choice for these
values of ǫ. Furthermore, it has been shown [10, 45] that IR-regular quantum states result if
the state during the preceding spacetime evolution did not suffer from IR divergences.4 That
is, if a universe with ǫ satisfying 2

3 ≤ ǫ ≤ 5
4 was preceded by a less IR-singular era (such as in

the standard Big Bang cosmological model with an inflationary phase [42–44]), the quantum
state will not be the Bunch–Davies-type vacuum with the mode functions (5.11), but an
excited state which is less singular in the IR.

Let us now turn to the closely related problems of secular growth, i. e., divergences in
the late-time limit η → 0, a(η) → ∞, and the growth of the correlators for large spatial
separations. To leading order in ǫ and δ, because of IR divergences the correlators for Hkl

and Q grow logarithmically for r ≡ |x − x′| → ∞ and equal time (η = η′) as

∆H
ijkl(η, η, r) ≈ −κ2H2

10π2

(

δikδjl + δilδjk − 2

3
δijδkl

)

ln(ξr) , (5.14a)

∆Q(η, η, r) ≈ −κ2H2

4π2ǫ
ln(ξr) , (5.14b)

where ξ is the IR cutoff in the momentum integral. Furthermore, if the physical distance a(η)r
between the two points is fixed, then they increase like ln[a(η)] as the universe expands (the
secular growth) because ln r = ln[a(η)r]−ln[a(η)]. The long-distance and secular growth of the
correlators appears to cause physically observable quantities to have this growth behaviour,
which has been debated in the past several years.

However, as we have seen, the integrands for the p-integration in the correlators for

the variables C
(1)
αµβν and Cµν have an extra factor of p4 compared to the integrand for the

correlators for Q and Hkl. For small p, the behaviour of the integrand of the Q correlator (5.6)
is dominated by the coefficient A(p) (5.13a) in the mode functions qp(η), which leads to a

4This is a consequence of the mathematical fact that given a correlation function which is a well-defined
distribution in some time interval (in particular without IR divergences), and which satisfies a linear hyperbolic
equation (the equation of motion), it is a well-defined distribution for all times, see, e. g., [46].
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behaviour of the p-integral of the form
∫

p−1− 2ǫ
1−ǫ

−2δ dp. Similarly, the p-integration of the
Hkl correlator (5.4) is dominated by the coefficient C(p) (5.13c) in the mode functions fp(η),

and behaves like
∫

p−1− 2ǫ
1−ǫ dp. Thus, the integrand for the p-integration in the correlators

of C
(1)
αµβν and Cµν behaves like either

∫

p3− 2ǫ
1−ǫ

−2δ dp or
∫

p3− 2ǫ
1−ǫ dp. By power counting we

conclude that the leading behaviour of these correlators as r → ∞ is either r−4+ 2ǫ
1−ǫ

+2δ or

r−4+ 2ǫ
1−ǫ . Thus, it is clear that there is no long-distance growth in the correlators for C

(1)
αµβν

and Cµν , and thus for the compactly supported observable I(f, χ) for small ǫ and δ, and for
0 ≤ ǫ < 2

3 or ǫ > 5
4 with δ = 0.

The lack of secular growth for these correlators can be shown using a simple scaling
argument. Namely, to first order in the slow-roll parameters ǫ and δ (or for constant, but
arbitrary ǫ), we find from equations (5.10) that

a(λη) = λ− 1
1−ǫ a(η) , (5.15a)

[1 − ǫ(λη)]H(λη) = λ
ǫ

1−ǫ [1 − ǫ(η)]H(η) , (5.15b)

ǫ(λη) = λ−2δǫ(η) , (5.15c)

where λ is a positive constant, and thus for the mode functions (5.11)

fp/λ(λη) = λ
3
2

+ ǫ
1−ǫ fp(η) , (5.16a)

qp/λ(λη) = λ
3
2

+ ǫ
1−ǫ

+δqp(η) . (5.16b)

By substituting this scaling behaviour into the correlation functions (5.6) and (5.4), we thus
find the following naïve scaling properties (with r ≡ |x − x′|):

∆Q(λη, λη′, λr) = λ
2ǫ

1−ǫ
+2δ∆Q(η, η′, r) , (5.17a)

∆H
ijkl(λη, λη′, λr) = λ

2ǫ
1−ǫ ∆H

ijkl(η, η′, r) . (5.17b)

However, the IR cutoff ξ that one needs to introduce breaks these scaling properties, since
the scaling p → p/λ is not accompanied by a corresponding scaling in ξ. Thus, the scal-
ing (5.17) will be valid whenever the IR cutoff can be removed. For definiteness, we consider
the correlator for Q with two derivatives at each point, all in the i-th direction. The scaling
law (5.17a) can be used to find

a−4(λη)∂2
λxi∂

2
λx′i∆

Q(λη, λη′, λr) = λ
6ǫ

1−ǫ
+2δa−4(η)∂2

xi∂
2
x′i∆

Q(η, η′, r) . (5.18)

In de Sitter space, where ǫ = δ = 0, this shows that the correlator is unchanged under the
rescaling, while in the general case there is only a mild dependence on λ. However, to properly
account for secular growth in the late-time limit we should not fix the coordinate distance r,
but the physical distance rphys between the two points, defined as

rphys ≡ a(η)r , (5.19)

with η′ = η. This motivates us to define

∆̂Q
phys(η, rphys) ≡ ∂2

xi
phys

∂2
x′i

phys
∆Q

(

η, η, a−1(η)rphys

)

, (5.20)
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where xi
phys ≡ a(η)xi and x′i

phys ≡ a(η)x′i. Then the scaling law (5.18) leads to

∆̂Q
phys(λη, rphys) = λ

6ǫ
1−ǫ

+2δ∆̂Q
phys

(

η, λ
ǫ

1−ǫ rphys

)

. (5.21)

Let us specialise to the case 0 ≤ ǫ < 2
3 . The late-time limit η → 0 then corresponds to

taking λ → 0 in this expression. Again, in the de Sitter limit ǫ = δ = 0, the correlator is
unchanged also under this rescaling that holds rphys fixed, and thus we conclude that there is
no secular growth at late times. In the general case, there is mild dependence on λ. We find
that this correlator tends to a constant if δ = 0 but to zero if δ > 0 in the limit λ → 0. The
same conclusions can be drawn in exactly the same way for the normalised time derivative
of ∆Q, given by a(η)−1∂η∆Q, and all normalised derivatives of ∆H

ijkl. Considering then the

correlators of C(1)αµ
βν and Cµ

ν (where the indices are raised with the background metric
g̃µν = a−2ηµν), we see from the explicit expressions (4.5) and (4.8) that all derivatives are
normalised, possibly up to factors of H or ǫ which only show a mild dependence on λ upon
rescaling (5.15). This implies that there is only mild secular growth, if any, predicted by the
scaling argument for the correlators of C(1)αµ

βν and Cµ
ν , and thus for the correlators of our

gauge-invariant observable I(f, χ).

6 Relation of the compactly supported observables to the power spectra

To recover from our observables the well-known tensor and scalar power spectra [42–44]

P2
H(|k|, η) =

|k|3
2π2

δikδjl

∫

〈0|Hij(x, η)Hkl(0, η)|0〉e−ikx d3x ≈ κ2H2

π2
, (6.1a)

P2
S(|k|, η) =

|k|3
8π2

∫

〈0|Q(x, η)Q(0, η)|0〉e−ikx d3x ≈ κ2H2

16π2ǫ
, (6.1b)

where the last expressions are the tree-level results for the Bunch–Davies vacuum at leading
order in slow-roll, we follow the steps presented in ref. [40] for the tensor spectrum. First we
express the tensor perturbation and the Sasaki–Mukhanov variable in terms of the linearised
Weyl tensor and the spatial trace of the tensor Cµν [see equation (4.9)] according to5

△3Hkl = −a−2P µνρσ
kl C(1)

µνρσ , (6.2a)

P µνρσ
kl = 2δµ

i δν
kδρ

j δσ
l △∂i∂j − 2δµ

0 δν
i δρ

0δσ
j (△δkl − ∂k∂l)∂

i∂j + 2Haδµ
0 δρ

i δν
(kδσ

l) △∂i , (6.2b)

△Q = δijCij , (6.2c)

and then rewrite the power spectra (6.1) in terms of the right-hand sides (using the symme-
tries of the Weyl tensor):

P2
H(|k|, η) =

1

2π2|k|9
δikδjla−4

∫

〈0|P αβγδ
ij C

(1)
αβγδ(x, η)P µνρσ

kl C(1)
µνρσ(0, η)|0〉e−ikx d3x

=
1

π2|k|5
a−4

[

2η̄αµη̄γρkβkδkνkσ − 4iHaη̄αµη̄γρδν
0k

βkδkσ + H2a2δα
0 δµ

0 η̄β(ν η̄σ)δkγkρ
]

×
∫

〈0|C(1)
αβγδ(x, η)C(1)

µνρσ(0, η)|0〉e−ikx d3x ,

(6.3a)

5Note that the expression for Hkl is different from the one given in ref. [40]. Both agree on-shell, but the
one presented here has the advantage of not requiring time derivatives.
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P2
S(|k|, η) =

1

8π2|k|δ
ijδkl

∫

〈0|Cij(x, η)Ckl(0, η)|0〉e−ikx d3x , (6.3b)

where we defined η̄µν ≡ ηµν + δµ
0 δν

0 . Since the relations (6.2) are (on-shell) identities, this
gives exactly the same power spectra. This shows clearly two crucial points: a) the power
spectra are gauge-invariant observables (at linear order), since they are obtained from the
manifestly gauge invariant linearised Weyl tensor and Cµν , and b) they are non-local (because
of the integration over the full three-dimensional space) and possibly IR divergent as |k| → 0
because of the explicit inverse powers of |k|.

To make contact with our observable I(f, χ), we use our result in the form (3.42)

I(f, χ) = −1

2

∫

ŵαµβνC
(1)
αµβν

√−g d4x −
∫

ûµνCµν
√−g d4x , (6.4)

and take the smearing functions ŵαµβν and ûµν such that the correlators of equation (6.3)
emerge. That is, for the scalar power spectrum we take

ûµν(x, τ) =
1

√

8π2|k|
η̄µνa(η)−nf δ

η (τ)e−ikxgδ′(x) , (6.5)

where f δ
η (τ) is a real smooth function of compact support depending on a parameter δ such

that
lim
δ→0

f δ
η (τ) = δ(τ − η) , (6.6)

and gδ′(x) is a real smooth function of compact support depending on a parameter δ′ such
that for its Fourier transform g̃δ′ we have

lim
δ′→0

|g̃δ′(p)|2 = (2π)3δ3(p) . (6.7)

With this choice of ûµν and taking ŵαµβν = 0, it then follows that

P2
S(|k|, η) = lim

δ→0
lim
δ′→0

〈0|I(f, χ)I(f∗, χ∗)|0〉 (6.8)

whenever this limit exists, and a similar (but more elaborate) construction of test functions is
needed for the tensor power spectrum. The right-hand side, before taking the limit δ, δ′ → 0,
represents a smeared version of the power spectrum, where f δ

η (τ) is a smearing in time around
the point τ = η and gδ′(x) limits the spatial integration to a finite volume. While for finite
smearing scales (i. e., δ, δ′ > 0) this is well defined, the existence of the limit δ, δ′ → 0 is
not guaranteed in general. In particular, while at tree level taking this limit we obtain the
well-known finite result (6.1), explicit calculations [47] show that once loop corrections are
fully taken into account only one of the limits can be taken, and taking both leads to a
divergent answer. Various resolutions of this problem have been proposed, re-examining the
connection between the observed power spectrum and its definition in terms of inflationary
correlation functions [48–52]. We note, however, that the smearing is unobservable as long as
it is small (for the smearing in time) or large enough (for the spatial smearing). In particu-
lar, the lowest observable mode, corresponding to the quadrupole in the Cosmic Microwave
Background, probes the power spectrum at wavelengths |p|min ≈ 2/∆η, where ∆η is the
difference in conformal time between recombination and today [42–44]. By extending the
spatial integration [i. e., the support of gδ′(x) in the test function (6.5)] to a large enough
region, the power spectrum is unmodified for all |p| & |p|min.
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7 Discussion

In this paper we showed that the gauge-invariant and compactly supported observables,
I(f, χ), in single-field inflation are equivalent to (compactly smeared) gauge-invariant local
operators, with linearised gravity in de Sitter and Minkowski spaces being special cases. One
of these local observables is the linearised Weyl tensor, while the other local observable is given
by equation (3.40), whose geometric meaning is not completely clear. One crucial ingredient
in the proof of this fact was that the test tensor fµν for the compactly supported observable
[see equation (3.1)] times an+2 can be chosen to be divergence free with respect to the flat
metric without changing the observable I(f, χ), as long as the graviton and inflaton fields
are on-shell. We find this result described in appendix D rather remarkable. For example, in
equation (D.7) the coefficient of tµtνfµν is the η-derivative of the coefficient of Haf + φ′χ.
There seems to be no reason to expect this to happen, but it is a crucial condition one needs
because the former has to vanish, whereas the latter has to be a constant. Another seemingly
miraculous aspect in equation (D.7) is that the variable w occurs in a total divergence and
nowhere else, which is also a crucial condition. We have not found any underlying reason why
these simplifications occur. The other crucial ingredient was a lemma, proved in appendix B,
that a smooth, compactly supported and divergence-free symmetric tensor fµν in flat space
can be expressed as fµν = ∂α∂βuαµβν , where the tensor uαµβν has the symmetry of the
Riemann tensor and is also smooth and compactly supported. This lemma is analogous to the
Poincaré lemma in the de Rham cohomology with compact support and appears to be known
in the mathematics community [38], although we believe that our proof that the support of
uαµβν can be chosen close to the support of fµν (in the sense explained in appendix B) is
new.

We then expressed the linearised Weyl tensor and the tensor Cµν , whose spacetime
smearing is equivalent to I(f, χ), in terms of the (gauge-invariant) tensor perturbation Hkl

and the Sasaki–Mukhanov variable Q, which carries the scalar perturbation. Since the correla-
tors of Hkl and Q are IR divergent and suffer from secular and long-distance growth, it might
appear that the strong correlation of these variables at long distances could be detectable
in principle. On the other hand, derivatives of these variables are IR finite and do not show
secular or long-distance growth. Thus, because we found that these variables always occur
with derivatives in I(f, χ), the correlator for the compactly supported observable I(f, χ) is
also IR finite and lacks secular or long-distance growth. Since the gauge-invariant variables
Hkl and Q are non-locally related to the graviton and inflaton fields, the local values of Hkl or
Q cannot be measured in a local measurement. On the other hand, the compactly supported
I(f, χ) models an observable that can be measured locally. Thus, our result indicates that
observables which can be measured locally are IR finite and not correlated strongly at long
distances, unlike the variables Hkl and Q. In de Sitter space this weak correlation of local
observables may be related to the fact that the IR divergences for gravitons can be gauged
away in any arbitrarily large but finite region by a gauge transformation which in this region
corresponds to a rescaling of coordinates [53]. Therefore, it is natural to speculate that the
IR divergences for the graviton and inflaton can also be gauged away in the same way in
single-field inflation. While our treatment differs from the usual one in cosmology, we have
shown that one can nevertheless recover the well-known scalar and tensor power spectra from
the correlator of the compactly supported observable I(f, χ) at all observable scales.

Our analysis does not make any statement about observables which are not of compact
support, or about large gauge transformations, which are gauge transformations that do not
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fall off at spatial infinity. In fact, it has been argued [54–57] that those gauge transformations
correspond to asymptotic symmetries of the spacetime which change the physical state. Nev-
ertheless, those changes can only be measured by a meta-observer who can compare different
asymptotic regions, and are unobservable for any single observer, for whom the compactly
supported observable considered in this paper is relevant.

Finally, let us comment on the fact that the correlator for the field Cµν is singular in the
de Sitter limit ǫ → 0. This is simply due to the fact that there is some freedom in the choice
of uαµβν , and a random choice results in χ that is singular in this limit. However, one is free
to choose a pair (fµν , χ) such that χ = O

(

ǫ0
)

and f = O(ǫ) (recall that in the de Sitter
limit, fµν can be made traceless on-shell). Also, if one chooses uαµβν to be traceless, then
χ = 0. Thus, the singularity of Cµν in the de Sitter limit is not an intrinsic property of the
compactly supported observable I(f, χ).
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A Conformal transformation

Under the conformal transformation

g̃µν = a2gµν (A.1)

the Christoffel symbols transform as

Γ̃α
µν = Γα

µν + a−1
(

δα
µδσ

ν + δα
ν δσ

µ − gµνgασ
)

∂σa , (A.2)

and the curvature tensors become

R̃α
βγδ = Rα

βγδ − 2a−2δα
[γgδ]β(∇a)2 + 4a−2gατ δσ

[γgδ][τ

[

a∇β]∇σa − 2(∇β]a)(∇σa)
]

(A.3a)

R̃µν = Rµν − (n − 2)a−1∇µ∇νa + 2(n − 2)a−2(∇µa)(∇νa)

− gµν

[

(n − 3)a−2(∇a)2 + a−1∇2a
] (A.3b)

a2R̃ = R − (n − 1)
[

2a−1∇2a + (n − 4)a−2(∇a)2
]

, (A.3c)

where ∇µ is the covariant derivative associated with gµν , ∇2 = ∇µ∇µ, and where we used
the notation

(∇a)2 ≡ (∇µa)(∇µa) . (A.4)

B A Poincaré-type lemma

Given a smooth, symmetric and divergence-free tensor fµν on R
n, n ≥ 2, with compact

support, i. e., fµν = fνµ, ∂µfµν = 0, and supp fµν ≡ Ωf , with Ωf = Ωf compact, there exists

a smooth tensor uαµβν with the symmetries of the Riemann tensor, i. e., uαµβν = uβναµ =
u[αµ][βν] and uα[µβν] = 0, such that

fµν = ∂α∂βuαµβν . (B.1)
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The support of uαµβν , denoted by

supp uαµβν ≡ Ωu = Ωu , (B.2)

can be chosen to be any compact star-shaped region in which Ωf is strictly contained,

Ωf ⊂ Ωu \ ∂Ωu . (B.3)

Proof. The construction is different for n = 2 and n > 2. Let us thus first take n = 2.
Define

u1212(x1, x2) ≡ −
∫ x1

−∞

[

∫ x2

−∞

f12(y1, y2) dy2

]

dy1 , (B.4)

and define the other components of uµανβ imposing the symmetries of the Riemann tensor.
Then one can readily verify that equation (B.1) is satisfied. Next, since the second-order
partial derivatives of u1212 are given by fµν , on any straight line x(λ) that does not intersect
Ωf we have

d2

dλ2
u1212(x(λ)) = 0 . (B.5)

This implies that u1212(x(λ)) = 0 on any piecewise linear curve starting from infinity (such
that xk(λ) → −∞ as λ → −∞ for k = 1, 2) which does not intersect Ωf , since as xk → −∞
the zeroth and first λ derivatives of u1212(x(λ)) vanish by construction. Hence the support
Ωu of uµανβ is the smallest simply-connected closed set containing Ωf , and equation (B.2) is
also satisfied.

Next we take n ≥ 3. Without loss of generality we may assume that Ωf is already star-
shaped, and we choose coordinates such that Ωf is star-like with the base point at x0 = 0.
Since the result is independent of the signature of spacetime, we in fact work in n-dimensional
Euclidean space. We first construct a solution Uµανβ of the equation ∂α∂βUµανβ = fµν

which is not necessarily compactly supported. Define the tensor F µν to be the solution (with
vanishing boundary conditions at infinity) to

△F µν = fµν , (B.6)

which can explicitly be given as

F µν(x) ≡ −Γ
(

n
2 − 1

)

4π
n
2

∫

fµν(y)

|x − y|n−2 dny . (B.7)

It can readily be verified that ∂µF µν = ∂νF µν = 0. Thus, the tensor

Uαµβν ≡ δαβF µν − δανF µβ − δµβF αν + δµνF αβ (B.8)

has the symmetries of the Riemann tensor (including Uα[µβν] = 0) and satisfies

∂α∂βUαµβν = fµν , (B.9)

but is not necessarily of compact support.
For later purposes it is useful to establish the behaviour of F µν , hence of Uαµβν , as

r → ∞. We first note that ∂µfµν = 0 implies fµν = ∂αvαµν for some compactly supported
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tensor vαµν = v[αµ]ν by the Poincaré lemma with compact support (see appendix C for a
proof). Thus we have

∫

fµν(y) dny =

∫

∂αvαµν(y) dny = 0 . (B.10)

From equation (B.10) and the definition (B.7) we immediately obtain

F µν(x) = −Γ
(

n
2 − 1

)

4π
n
2

∫
[

1

|x − y|n−2 − 1

rn−2

]

fµν(y) dny , (B.11)

where r ≡ |x|. Since |x − y|−(n−2) − r−(n−2) decays like r−(n−1) as r → ∞, the tensors F µν

and Uαµβν decay like r−(n−1) at infinity, and a similar argument shows that the tensors ∂γF µν

(and thus ∂γUαµβν) decay like r−n at infinity.
Now our task is to subtract a term from Uαµβν in such a way that the resulting tensor

uαµβν has compact support while still satisfying equation (B.1). We choose a star-shaped
region Ωu satisfying the condition (B.3), and an auxiliary function χ which is smooth and
satisfies

χ(x) =

{

0 x ∈ Ωf

1 x ∈ R
n \ Ωu .

(B.12)

We also define the integral operators Gk on any function f by

(Gkf)(x) ≡
∫ ∞

1
tk−1f(tx) dt . (B.13)

By letting ρ ≡ tr, we can write these operators as

(Gkf)(x) = r−k

∫ ∞

r
ρk−1f(ρx/|x|) dρ . (B.14)

In this form it is clear that the operators Gk are well defined for r > 0 on functions which
decay faster than r−k at infinity, and map functions with star-shaped compact support to
functions with the same support. We note that, if f decays as fast as r−l at infinity, i. e., if
|f(r)| ≤ cr−l for r ≥ R for some R, where c is a positive constant, then for all r ≥ R and all
k < l we have

|Gkf | ≤ r−k

∫ ∞

r
ρk−1|f(ρ)| dρ ≤ c

l − k
r−l . (B.15)

Thus, Gkf also decays as fast as r−l at infinity. Using the definition (B.13) and the equality
xα∂αf(tx) = t∂tf(tx), one readily finds that

(xα∂α + k)Gkf = −f , (B.16)

and that
∂αGkf = Gk+1∂αf (B.17)

if ∂αf decays faster than r−(k+1) at infinity.
Define now the tensors

Ūαµβν ≡ Gn−2Uαµβν , (B.18a)

¯̄Uαµβν ≡ Gn−3Ūαµβν . (B.18b)
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These tensors are well defined for r > 0 because the tensor Uαβµν decays like r−(n−1) as
r → ∞, as we have shown before, i. e., they decay faster than r−(n−2). They also inherit the
symmetries of Uαµβν . Then we define

W αµβνρ ≡ xρŪαµβν + V αµβνρ − V µαβνρ + V βναµρ − V νβαµρ (B.19)

with

V αµβνρ ≡ 1

2
xα

(

Ūρµνβ + xν∂σ
¯̄Uρ(βµ)σ − xβ∂σ

¯̄Uρ(µν)σ + xρ∂σ
¯̄Uσµνβ

)

. (B.20)

Note that the tensor V αµβνρ is antisymmetric under the exchange β ↔ ν by construction. It
thus follows that the tensor W αµβνρ is antisymmetric under each of the exchanges α ↔ µ and
β ↔ ν and symmetric under the pairwise exchange (αµ) ↔ (βν). We also find by an explicit
calculation that V α[µβν]ρ = 0, and then also W α[µβν]ρ = 0. Therefore, the tensor W αµβνρ

has the symmetry of the Riemann tensor in the first four indices. We can also organise this
tensor as follows:

W αµβνρ = x[ρŪα]µβν + x[ρŪβ]ναµ − xµxν∂σ
¯̄Uρ(αβ)σ +

1

2

(

xαxν∂σ
¯̄Uρβµσ + xβxµ∂σ

¯̄Uρανσ
)

+ xνx[α∂σ
¯̄Uρ]µβσ + xµx[β∂σ

¯̄Uρ]νασ − xαx[β∂σ
¯̄Uρ]νµσ − xβx[α∂σ

¯̄Uρ]µνσ .

(B.21)

In this form it is clear that the tensor W αµβνρ is a sum of terms which are antisymmetric
under one of the exchanges α ↔ ρ and β ↔ ρ.

We then obtain after a long but straightforward calculation using the properties (B.16)
and (B.17) of the integral operators that

∂ρV αµβνρ = −1

2
Ūαµβν +

3

4
xα∂ρ

¯̄Uβνµρ +
1

2
xν∂ρ

¯̄Uα(βµ)ρ − 1

2
xβ∂ρ

¯̄Uα(µν)ρ − xαx[βGn−1Gnfν]µ .

(B.22)
From this it follows that

∂ρW αµβνρ = −Uαµβν + 4x[α
(

Gn−1Gnfµ][β
)

xν] , (B.23)

and finally we define

uαµβν ≡ Uαµβν + ∂ρ

(

χ W αµβνρ
)

(B.24)

with the auxiliary function χ specified by equation (B.12). Note that, although the tensor
W αµβνρ is undefined at r = 0, the tensor uαµβν is well defined there as well because χ(x) = 0
if x ∈ Ωf , which contains the origin. The tensor uαµβν clearly has the symmetries of the
Riemann tensor. Equation (B.1) follows from equation (B.9) and the antisymmetry properties
of each term in W αµβνρ manifest in equation (B.21), which imply

∂α∂β∂ρ

(

χ W αµβνρ
)

= 0 . (B.25)

Finally, the tensor uαµβν has support in Ωu because for x ∈ R
n \ Ωu, where fµν = 0 and

χ = 1, we have ∂ρW αµβνρ = −Uαµβν and hence uαµβν = 0. �
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C The Poincaré lemma for vectors with compact support

Given a smooth and divergence-free vector fµ on R
n, n ≥ 2, with compact support, there

exists a smooth antisymmetric tensor uµν such that fν = ∂µuµν . The support of uµν can be

chosen to be any compact star-shaped region in which the support of fµ is strictly contained.

Proof. The construction proceeds in close analogy to the lemma proved in appendix B,
and we again distinguish the cases n = 2 and n > 2. For n = 2, we find

u12(x1, x2) =

∫ x1

−∞

f2(y, x2) dy . (C.1)

One can show that the support of u12 is the smallest simply-connected closed set containing
the support of fµ by noting that on any piecewise smooth curve xµ(λ) outside the support
of fµ one has du12(x(λ))/ dλ = 0.

Next we let n ≥ 3. We first construct a solution to the equation △Aµ = fµ as

Aµ ≡ −Γ
(

n
2 − 1

)

4π
n
2

∫

fµ(y)

|x − y|n−2 dny . (C.2)

Since ∂µAµ = 0, the tensor Uµν ≡ ∂µAν − ∂νAµ satisfies ∂µUµν = fν but is not necessarily
compactly supported. It can be shown as in appendix B that Uµν decays like r−n at infinity.
Then the tensor uµν ≡ Uµν + 3∂ρ

(

χ x[ρGn−2Uµν]
)

can be shown to satisfy all the required
properties in the same way as in appendix B. �

Remark. If we replace fµ by a compactly supported symmetric tensor fµν satisfying ∂µ∂νfµν =
0 in this lemma, then we can find a compactly supported tensor uρµν antisymmetric in the
first two indices such that fµν = ∂ρuρµν + ∂ρuρνµ. This can be proved as follows: Since
gµ ≡ ∂νfµν is divergence free, ∂µgµ = 0, according to the above we can find a compactly sup-
ported antisymmetric tensor qµν such that gµ = ∂νqµν . Then aµν ≡ fµν − qµν is divergence
free in the second index, ∂νaµν = 0. Hence according to the above we have aµν = 2∂ρuµρν ,
where uµρν is compactly supported and antisymmetric in the last two indices. Symmetrising
this equation in µ and ν, we obtain the required result.

D On-shell elimination of a scalar-type linear combination of test functions

In this appendix we prove equations (3.37), which are equivalent to Haδfµν + φ′δχ =
−Hafµν − φ′χ, which, in turn, is equivalent to

S(v, w) ≡ gµνE(1)
µν (v, w) − κ2 φ′

Ha
F (1)(v, w) = −f − φ′

Ha
χ , (D.1)

where vµν and w are given by equations (3.35). Instead of simply substituting these equations
and verifying equation (D.1), we start with the following general ansatz for vµν :

vµν(x) = A(η)

(

fµν(x) − 1

n − 1
gµνf(x)

)

+ gµνα(x) . (D.2)

We also find it instructive to define

S(v, w, z) ≡ gµνE(1)
µν (v, w) − κ2z(η)F (1)(v, w) , (D.3)
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and let z = φ′/(Ha) so that S(v, w, z) = S(v, w) in the end.
By substituting equation (D.2) into (D.3) we immediately find that, in order not to

have any second derivative of w in S(v, w, z), we need to set

α = κ2 z

(n − 1)(n − 2)
w . (D.4)

By substituting equation (D.2) with this form of α into equation (D.3) we find

S = ∇ρ

[

κ2

[

2∇ρz +

(

n − 2 − κ2z2

2(n − 1)

)

∇ρφ

]

w −
(

(n − 2)Aχ + κ2 z

2(n − 1)
Af

)

∇ρφ

]

+ κ2

[

−∇ρ∇ρz +

(

1 + κ2 nz2

4(n − 1)(n − 2)

)

V ′(φ) + κ2 nz

2(n − 1)(n − 2)
V (φ) +

zV ′′(φ)

2

+κ2 z

2(n − 1)
∇ρz∇ρφ

]

w +
[

−(n − 2)∇µ∇νA + κ2z∇µφ∇νA + κ2zA∇µ∇νφ
]

fµν

+
[

−(n − 2)∇µA∇µφ + κ2zA∇µφ∇µφ
]

χ

+

[

− κ2

2(n − 1)
V (φ) +

κ2

2(n − 1)
∇µz∇µφ − κ2 z

4(n − 1)
V ′(φ)

]

Af .

(D.5)

Note that this equation is valid in any spacetime. In FLRW spacetime, upon substitution of
z = φ′/(Ha) with

z′ = −(n − 1 − ǫ)φ′ − a

2H
V ′(φ) , (D.6a)

z′′ = −(n − 1 − ǫ)φ′′ + ǫ′φ′ − a

2H
φ′V ′′(φ) − 1 + ǫ

2
a2V ′(φ) , (D.6b)

equation (D.5) simplifies remarkably to

S = − 1

Ha
∇ρ

[

κ2Htρ

[

2z′ +

(

n − 2 − κ2 z2

2(n − 1)

)

φ′

]

w − Htρφ′

(

(n − 2)Aχ + κ2 z

2(n − 1)
Af

)]

+
n − 2

Ha

[

−
(

H

a
A

)′′

tµtνfµν +

(

H

a
A

)′
(

Haf + φ′χ
)

]

.

(D.7)

Hence we achieve

S = −f − φ′

Ha
χ (D.8)

by requiring that (HA/a)′ = −1/(n − 2) and that the expression inside the brackets in the
first line vanishes. That is,

w = A
2(n − 1)(n − 2)χ + κ2zf

κ2[4(n − 1)z′/φ′ + 2(n − 2)(n − 1) − κ2z2]
, (D.9)

which can be written in the form (3.35a), with A(η) given by equation (3.36).
Remark. If we let A(η) = 0 and z =

√

2(n − 1)(n − 2)/κ in equation (D.5), then we have

S =
w

κ
√

2(n − 1)(n − 2)

[

nκ2V (φ) +
√

2(n − 1)(n − 2)
(

1 +
n

2

)

κV ′(φ) + (n − 1)(n − 2)V ′′(φ)
]

.

(D.10)
Then one can choose w such that S = −f − κ2zχ. This means that it is possible to set
f̌ +κ2zχ̌ = 0 if z =

√

2(n − 1)(n − 2)/κ for any generic spacetime generated by a scalar field
with potential V (φ), although we have not found any application of this fact.
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E Expressing the tensor Cµν as a geometric quantity

In this appendix we show that all components of the tensor Cµν can be expressed as a
linear perturbation of geometric quantities, except for C00. It is convenient to introduce the
following expressions, where a bar over a tensor indicates its projection on each free index
onto spatial coordinates, e. g.,

∂̄µ ≡
(

δν
µ − δ0

µδν
0

)

∂ν = ∂µ − δ0
µ∂η , (E.1a)

η̄µν ≡
(

δα
µ − δ0

µδα
0

)

(

δβ
ν − δ0

νδβ
0

)

ηαβ = ηµν + δ0
µδ0

ν , (E.1b)

h̄µν ≡ hµν − 2δ0
(µhν)0 + δ0

µδ0
νh00 . (E.1c)

It is also useful to define an invariant four-velocity by the normalised gradient of the scalar
field

ũµ ≡ ∇µφ̃
√

−g̃ρσ∇ρφ̃∇σφ̃
, (E.2)

which has the following background value:

uµ = −tµ = aδ0
µ . (E.3)

Its part linear in perturbations is given by

u(1)
µ = −a

2
δ0

µh00 +
a

φ′
∂̄µφ(1) . (E.4)

From this, we define the acceleration as

ãµ ≡ ũν∇̃ν ũµ , (E.5)

which has vanishing background value and linear perturbation

a(1)
µ = −1

2
∂̄µh00 − 1

Ha
∂η∂̄µ

(

Ha

φ′
φ(1)

)

− ǫ∂̄µ

(

Ha

φ′
φ(1)

)

. (E.6)

We also define the projector
Π̃ν

µ ≡ δν
µ + ũµũν , (E.7)

whose background value reads
Πν

µ = δν
µ − δ0

µδν
0 = δ̄ν

µ . (E.8)

Its part linear in perturbation is

Π(1)
µ

ν = −δ0
µh0ν + a−1δ0

µηνρu(1)
ρ − a−1δν

0 u(1)
µ . (E.9)

Next we identify useful geometric quantities. The extrinsic curvature tensor of the hy-
persurfaces on which the scalar field φ̃ is constant (the constant-field hypersurface) is

K̃µν ≡ Π̃ρ
µ∇̃ρũν = ∇̃µũν + ũµũρ∇̃ρũν . (E.10)

Its background value and linear part are

Kµν = −Ha2
(

ηµν + δ0
µδ0

ν

)

(E.11)
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and

K(1)
µν =

1

H
∂̄µ∂̄ν

(

Ha

φ′
φ(1)

)

− 2aδ0
(µ∂̄ν)

(

Ha

φ′
φ(1)

)

+ a∂(µ

(

hν)0 − δ0
ν)h00

)

− a

2
∂η

(

hµν − δ0
µδ0

νh00

)

− Ha2

2

(

2hµν + ηµνh00 − δ0
µδ0

νh00

)

,

(E.12)

respectively. Since Kµν 6= 0, K
(1)
µν is not gauge invariant. However, the combination

L̃µν ≡ −2

[

K̃µν − 1

(n − 1)
(g̃µν + ũµũν)∇̃αũα

]

∇̃βũβ (E.13)

has vanishing background value. Hence its first-order part is gauge invariant and given by

L(1)
µν = 2

[

(n − 1)∂̄µ∂̄ν − η̄µν △
]

(

Ha

φ′
φ(1)

)

+ 2(n − 1)Haδ̄α
(µ∂̄ν)hα0 − (n − 1)Ha∂ηh̄µν − η̄µν [Ha∂η(h00 − h) + 2Ha∂ρh0ρ] .

(E.14)

We also construct the curvature tensor R̃αβγδ of the constant-field hypersurfaces, which
is related to the spacetime Riemann tensor R̃αµβν through the Gauß-Codazzi equation as

R̃αβγδ = Π̃µ
αΠ̃ν

βΠ̃ρ
γΠ̃σ

δ R̃µνρσ − K̃αγK̃βδ + K̃αδK̃βγ . (E.15)

Its background value vanishes, and the part linear in perturbation, which is thus gauge
invariant, reads

R(1)
αβγδ = −a2∂̄γ ∂̄[αh̄β]δ + a2∂̄δ∂̄[αh̄β]γ − 4a2∂̄[αη̄β][γ ∂̄δ]

(

Ha

φ′
φ(1)

)

. (E.16)

We then obtain the first-order part of the Ricci tensor and Ricci scalar of the constant-field
hypersurfaces as

R(1)
µν = ∂̄β ∂̄(µh̄ν)β − 1

2
∂̄µ∂̄ν(h + h00) − 1

2
△h̄µν +

[

(n − 3)∂̄µ∂̄ν + η̄µν △
]

(

Ha

φ′
φ(1)

)

(E.17)

and

a2R(1) = ∂̄α∂̄βh̄αβ − △(h + h00) + 2(n − 2) △
(

Ha

φ′
φ(1)

)

, (E.18)

respectively. We also need to expand the linearised equations of motion (2.14) in the pertur-
bation using the flat-space variable hµν . We find

E(1)
µν = 2Rflat

µν − ηµνRflat − 2(n − 2)Ha∂(µhν)0 + (n − 2)Hah′
µν − (n − 2)Haηµνh′

+ 2(n − 2)Haηµν∂ρh0ρ − (n − 2)H2a2(n − 1 − ǫ)ηµνh00

− 2(n − 2)ǫHa
(

ηµν∂η + 2δ0
(µ∂ν)

)

(

Ha

φ′
φ(1)

)

+
(

ηµν + 2δ0
µδ0

ν

)

(n − 1 − ǫ)Haφ′φ(1) +
(

ηµν + δ0
µδ0

ν

)

a2V ′(φ)φ(1) ,

(E.19)
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where

Rflat
µν = ∂(µ∂βhν)β − 1

2
∂2hµν − 1

2
∂µ∂νh (E.20)

and
Rflat = ηµνRflat

µν = ∂α∂βhαβ − ∂2h (E.21)

are the linearised flat-space Ricci tensor and scalar. We did not use the linearised field equa-
tion F (1), but we list it for completeness:

Ha3

φ′
F (1) = ∂2

(

Ha

φ′
φ(1)

)

+ Ha(n − 2ǫ)∂η

(

Ha

φ′
φ(1)

)

+
a2

φ′
V ′(φ)∂η

(

Ha

φ′
φ(1)

)

+
Ha

n − 2

[

HaV ′(φ) + φ′(n − 1 − ǫ)
]

φ(1) + Ha

(

∂ρh0ρ − 1

2
h′

)

+
1

2

Ha3

φ′
V ′(φ)h00 .

(E.22)

We then find after a long but straightforward calculation

Cµν + tµtνgρσCρσ = Cµν + δ0
µδ0

νηρσCρσ = U (1)
µν , (E.23)

where U
(1)
µν is the first-order part of

Ũµν ≡ 1

n − 3

(

−2ũαũβC̃αµβν + 2R̃µν − 1

n − 2
g̃µνR̃

)

+
4

n − 1
ũ(µãν)∇̃αũα

− 2

n − 2
ũ(µẼν)βũβ − 4

n − 2
ũµũν ũαũβẼαβ +

n − 4

(n − 2)(n − 3)
ũµũνR̃ .

(E.24)

(We note that the background value of Ũµν vanishes.) Thus, we have succeeded in expressing
the traceless parts of the tensor Cµν using (perturbed) local geometric tensors in the FLRW
background. However, we have been unable to do so for the trace, or, equivalently, for the 00
components.

In general, the gauge transformation of a first-order perturbation is given by (2.18)

δT
(1)
αβ···γ = LξTαβ···γ , (E.25)

which vanishes for arbitrary ξ if and only if the background value vanishes Tαβ···γ = 0, or
is proportional to a combination of δ tensors, in which case we can redefine Tαβ···γ by sub-

tracting these terms without changing the perturbation T
(1)
αβ···γ . Therefore, we can obtain all

gauge-invariant linearised observables expressible using (perturbed) local geometric tensors
by linearising all geometric tensors which vanish for the FLRW background. A complete set
of such tensors has been found recently [58], and it is instructive to compare gµνCµν with
the scalars that may be constructed from this set. As Cµν has been obtained using on-shell
relations, this comparison should also be done on-shell, and from equation (4.8) we infer

gµνCµν =

(

n − 2 + 2δ − n − 2

n − 1
ǫ

)

H

a
Q′ . (E.26)

On the other hand, all scalar combinations stemming from the linearisation of the complete
set of geometric tensors found in ref. [58] are on-shell equivalent to a linear combination of

R(1) = (n − 2)a−2 △Q ,

(

ũµ∇̃µR̃
∇̃ν ũν

+
n − 2

n − 1
R̃
)(1)

=
n

n − 1
a−3 △Q′ . (E.27)
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However, the only general relation between derivatives of Q is its equation of motion (5.1b),
which does not enable us to express Q′ in terms of (derivatives of) △Q.

We can interpret this observation as a no-go result: there is no geometric local tensor
whose background value is vanishing and whose linear perturbation is equal to the trace
gµνCµν . Note that this is not at variance with the completeness result of ref. [58], because
one can construct non-local geometric tensors with invariant and local linear perturbation
but non-constant background values. Examples of such tensors are the so-called relational
observables, which in the context of inflation have been discussed in ref. [59], though we have
not succeeded in finding a relational observable whose linear perturbation is equal to gµνCµν .
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