76 research outputs found

    A comparison between the transpressional plate boundaries of South Island, New Zealand, and Southern California, USA: the Alpine and San Andreas fault systems

    Get PDF
    There are clear similarities in structure and tectonics between the Alpine Fault system (AF) of New Zealand’s South Island and the San Andreas Fault system (SAF) of southern California, USA. Both systems are transpressional, with similar right slip and convergence rates, similar onset ages (for the current traces), and similar total offsets. There are also notable differences, including the dips of the faults and their plate-tectonic histories. The crustal structure surrounding the AF and SAF was investigated with active and passive seismic sources along transects known as South Island Geophysical Transect (SIGHT) and Los Angeles Region Seismic Experiment (LARSE), respectively. Along the SIGHT transects, the AF appears to dip moderately southeastward (~50 deg.), toward the Pacific plate (PAC), but along the LARSE transects, the SAF dips vertically to steeply northeastward toward the North American plate (NAM). Away from the LARSE transects, the dip of the SAF changes significantly. In both locations, a midcrustal decollement is observed that connects the plate-boundary fault to thrust faults farther south in the PAC. This decollement allows upper crust to escape collision laterally and vertically, but forces the lower crust to form crustal roots, reaching maximum depths of 44 km (South Island) and 36 km (southern California). In both locations, upper-mantle bodies of high P velocity are observed extending from near the Moho to more than 200-km depth. These bodies appear to be confined to the PAC and to represent oblique downwelling of PAC mantle lithosphere along the plate boundaries

    Insulin therapy in type 2 diabetes is associated with barriers to activity and worse health status: a cross-sectional study in primary care

    Get PDF
    IntroductionMany individuals with type 2 diabetes mellitus (T2DM) experience "psychological insulin resistance". Consequently, it could be expected that insulin therapy may have negative effects on psychological outcomes and well-being. Therefore, this study compared health status and psychosocial functioning of individuals with T2DM using only oral antihyperglycemic agents (OHA) and on insulin therapy (with or without OHA).Materials and MethodsIn this cross-sectional study, we used baseline data of a cluster randomized controlled trial conducted in 55 Dutch general practices in 2005. Health status was measured with the Short Form (SF)-36 (scale 0-100) and psychosocial functioning with the Diabetes Health Profile (DHP, scale 0-100). To handle missing data, we performed multiple imputation. We used linear mixed models with random intercepts per general practice to correct for clustering at practice level and to control for confounding.ResultsIn total, 2,794 participants were included in the analysis, their mean age was 65.8 years and 50.8% were women. Insulin-users (n = 212) had a longer duration of T2DM (11.0 versus 5.6 years) and more complications. After correcting for confounders and multiple comparisons, insulin-users reported significantly worse outcomes on vitality (SF-36, adjusted difference -5.7, p=0.033), general health (SF-36, adjusted difference -4.8, p=0.043), barriers to activity (DHP, adjusted difference -7.2, p<0.001), and psychological distress (DHP, adjusted difference -3.7, p=0.004), all on a 0-100 scale.DiscussionWhile previous studies showed similar or better health status in people with type 2 diabetes receiving insulin therapy, we found that vitality, general health and barriers to activity were worse in those on insulin therapy. Although the causality of this association cannot be established, our findings add to the discussion on the effects of insulin treatment on patient-reported outcomes in daily practice.Public Health and primary carePrevention, Population and Disease management (PrePoD

    Hierarchical model for the scale-dependent velocity of seismic waves

    Get PDF
    Elastic waves of short wavelength propagating through the upper layer of the Earth appear to move faster at large separations of source and receiver than at short separations. This scale dependent velocity is a manifestation of Fermat's principle of least time in a medium with random velocity fluctuations. Existing perturbation theories predict a linear increase of the velocity shift with increasing separation, and cannot describe the saturation of the velocity shift at large separations that is seen in computer simulations. Here we show that this long-standing problem in seismology can be solved using a model developed originally in the context of polymer physics. We find that the saturation velocity scales with the four-third power of the root-mean-square amplitude of the velocity fluctuations, in good agreement with the computer simulations.Comment: 7 pages including 3 figure

    A comparison between the transpressional plate boundaries of the South Island, New Zealand, and southern California, USA: the Alpine and San Andreas Fault systems

    Get PDF
    There are clear similarities in structure and tectonics between the Alpine Fault system (AF) of New Zealand’s South Island and the San Andreas Fault system (SAF) of southern California, USA. Both systems are transpressional, with similar right slip and convergence rates, similar onset ages (for the current traces), and similar total offsets. There are also notable differences, including the dips of the faults and their plate-tectonic histories. The crustal structure surrounding the AF and SAF was investigated with active and passive seismic sources along transects known as South Island Geophysical Transect (SIGHT) and Los Angeles Region Seismic Experiment (LARSE), respectively. Along the SIGHT transects, the AF appears to dip moderately southeastward (~50 deg.), toward the Pacific plate (PAC), but along the LARSE transects, the SAF dips vertically to steeply northeastward toward the North American plate (NAM). Away from the LARSE transects, the dip of the SAF changes significantly. In both locations, a midcrustal decollement is observed that connects the plate-boundary fault to thrust faults farther south in the PAC. This decollement allows upper crust to escape collision laterally and vertically, but forces the lower crust to form crustal roots, reaching maximum depths of 44 km (South Island) and 36 km (southern California). In both locations, upper-mantle bodies of high P velocity are observed extending from near the Moho to more than 200-km depth. These bodies appear to be confined to the PAC and to represent oblique downwelling of PAC mantle lithosphere along the plate boundaries

    Crustal structure across the Costa Rican Volcanic Arc

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 1087–1103, doi:10.1002/ggge.20079.Island arcs are proposed to be essential building blocks for the crustal growth of continents; however, island arcs and continents are fundamentally different in bulk composition: mafic and felsic, respectively. The substrate upon which arcs are built (oceanic crust versus large igneous province) may have a strong influence on crustal genesis. We present results from an across-arc wide-angle seismic survey of the Costa Rican volcanic front which test the hypothesis that juvenile continental crust is actively forming at this location. Travel-time tomography constrains velocities in the upper arc to a depth of ~15 km where average velocities are <6.5 km/s. The upper 5 km of crust is constrained by velocities between 4.0 and 5.5 km/s, which likely represent sediments, volcaniclastics, flows, and small intrusions. Between 5 and 15 km depth, velocities increase slowly from 5.5 to 6.5 km/s. Crustal thickness and lower crustal velocities are roughly constrained by reflections from an inferred crust-mantle transition zone. Crustal thickness beneath the volcanic front in Costa Rica is ~40 km with best-fit average lower-crustal velocities between 6.8 and 7.1 km/s. Overall, velocities across the arc in central Costa Rica are at the high-velocity extreme of bulk continental crust velocities and are lower than modern island arc velocities, suggesting that continental compositions are created at this location. These data suggest that preexisting thick crust of the Caribbean Large Igneous Province has a measurable effect on bulk composition. This thickened arc crust may be a density filter for mafic material and thereby support differentiation toward continental compositions.Funding was provided by the NSF-MARGINS and ODP programs, under NSF grant OCE-0405654 and project Nº 113- A4-408 from the University of Costa Rica.2013-10-2
    • …
    corecore