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[1] Island arcs are proposed to be essential building blocks for the crustal growth of continents; however,
island arcs and continents are fundamentally different in bulk composition: mafic and felsic, respectively.
The substrate upon which arcs are built (oceanic crust versus large igneous province) may have a strong
influence on crustal genesis. We present results from an across-arc wide-angle seismic survey of the Costa
Rican volcanic front which test the hypothesis that juvenile continental crust is actively forming at this
location. Travel-time tomography constrains velocities in the upper arc to a depth of ~15 km where average
velocities are <6.5 km/s. The upper 5 km of crust is constrained by velocities between 4.0 and 5.5 km/s,
which likely represent sediments, volcaniclastics, flows, and small intrusions. Between 5 and 15 km depth,
velocities increase slowly from 5.5 to 6.5 km/s. Crustal thickness and lower crustal velocities are roughly
constrained by reflections from an inferred crust-mantle transition zone. Crustal thickness beneath the
volcanic front in Costa Rica is ~40 km with best-fit average lower-crustal velocities between 6.8 and
7.1 km/s. Overall, velocities across the arc in central Costa Rica are at the high-velocity extreme of bulk
continental crust velocities and are lower than modern island arc velocities, suggesting that continental
compositions are created at this location. These data suggest that preexisting thick crust of the Caribbean
Large Igneous Province has a measurable effect on bulk composition. This thickened arc crust may be a
density filter for mafic material and thereby support differentiation toward continental compositions.
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1. Introduction

[2] Island arcs are the surface representation of
interaction between mantle-wedge flux melting and
the overlying material within intraoceanic subduc-
tion zones and have been postulated to be a source
of post-Archean building material for continental
crust [Anderson, 1982;Kay and Kay, 1991; Rudnick,
1995]. Primary evidence for island arcs as continen-
tal building blocks comes from trace-element signa-
tures of continental crust which are most similar to
those found at convergent margins and less like those
found at mid-ocean ridges and ocean islands [Taylor
and McLennan, 1985; Christensen and Mooney,
1995; Rudnick and Gao, 2003]. This leads to a
compelling contradiction, designated the “andesite
paradox” [Taylor and McLennan, 1981], since island
arcs primarily produce mafic melts such as basalts
[e.g., Kay and Kay, 1986; Smithson et al., 1981],
whereas continental crust is approximately intermedi-
ate (i.e., andesitic) in bulk composition [Christensen
and Mooney, 1995; Rudnick and Fountain, 1995;
Rudnick, 1995]. If island arcs are a significant contrib-
utor to continental crustal volume, there must be a
process for modifying basaltic arc melt into andesitic
continental crust. Various mechanisms have been
proposed, including fractionation and/or anatexis
[e.g., Behn and Kelemen, 2006; Kelemen, 1995],
delamination of mafic and ultramafic residuals
[e.g.,Ducea and Saleeby, 1998], sediment relamination
[Hacker et al., 2011], modification by accretion
[e.g.,Draut et al., 2009], or some combination thereof.
Crustal structure and composition inferred from
seismic velocities can further clarify the relative roles
of these processes in the genesis of continental crust.

[3] Previous seismological studies of active island
arcs reveal a range of arc composition from domi-
nantly mafic (e.g., the Aleutian arc [Holbrook et al.,
1999; Schillington et al., 2004]) to large heteroge-
neous regions containing some intermediate material
(i.e., the Izu-Bonin arc [Suyehiro et al., 1996;
Takahashi et al., 2008; Calvert et al., 2008]).

Despite these variations, average arc crust has a
dominantly mafic composition in all intraoceanic
arcs studied to date [Calvert, 2011]. While each
arc is unique in the combination of variables that
drive lava chemistry, a few specific variables help
explain compositional variance and the evolution
of island arc material to more continental-like
compositions. For example, the Izu-Bonin arc, which
contains areas of intermediate material, has seen a
relatively large amount of extension compared to
the Aleutian arc, which has little extension and is
dominantly mafic [Calvert, 2011]. Volcano-scale
variations of seismic velocity along the Izu-Bonin
arc have been attributed to differing stages of
continental growth [Kodaira et al., 2007]. Other
factors that influence arc compositions include
composition and hydration of the subducting slab
[e.g., Patino et al., 2000], convergence rate [e.g.,
Kelemen et al., 2003; Hughes and Mahood, 2008],
and the composition, structure, and thickness of the
overriding plate.

[4] The substrate upon which intraoceanic arcs are
built (i.e., oceanic crust versus large igneous
province) may have a significant influence on mate-
rial differentiation and thereby continental genesis
[Albarède, 1998; Vogel et al., 2004, 2006]. The vol-
canic front in central Costa Rica is a prime location
to study subduction-related magmatic crust because
it is built upon a preexisting large igneous province
that provides a thicker initial crust to the arc-building
process. The relative importance of this substrate can
be seen in the emplacement of upper-crustal silicic
magmas over the Caribbean Large Igneous Province
(CLIP) [Vogel et al., 2004, 2006]. Vogel et al.
[2004] proposed that silicic products in the upper
and middle crust of Costa Rica were derived from
anatexis and/or fractional crystallization of stalled
magmas. Thus, the CLIP may potentially act as a
density filter and thereby have a strong influence on
arc composition in Costa Rica.

[5] In order to test the role of the CLIP in the
formation of the volcanic arc in Costa Rica, two
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active-source seismic surveys were conducted in
2005 and 2008 as a part of project TICO-CAVA.
In this paper, we present tomography results from
the 2005 across-arc transect (Figure 1). Our seismic
velocity model closely constrains velocities in the
upper 15 km of crust; velocities in the lower crust
(15–40 km depth) are roughly constrained by deep
crustal and upper mantle reflections, which are
interpreted to coincide with a crust-mantle transition
zone (CMTZ).

2. Tectonic and Geologic Setting

[6] Arc volcanism along the western edge of the
Caribbean Plate has been ongoing since at least
65Ma with early subduction of the Farallon Plate
[Giunta et al., 2006]. The modern Central Volcanic
Cordillera in Costa Rica has been forming since the
Eocene-Oligocene from shallow subduction of the
Cocos Plate beneath the Caribbean Plate [Meschede
and Frisch, 1998]. At present, the Cocos and
Caribbean Plates are converging along the Middle
America Trench (MAT) at a rate between 8 and
9 cm/yr [DeMets, 2001].

[7] The Cocos Plate is ~24Ma at the MAT
[Barckhausen et al., 2001] and displays distinct
morphological features that have been correlated
with regional geochemical and isotopic variations
in arc volcanism [Carr, 1984; Carr et al., 1990;

von Huene et al., 2000; Patino et al., 2000; Abers
et al., 2003; Hoernle et al., 2008; Gazel et al.,
2009]. In particular, the Cocos Plate has a region of
rough seafloor associated with interactions between
the Cocos-Nazca spreading center and the Galapagos
hot spot, a region of smooth seafloor from the East
Pacific Rise spreading center, and a large ridge (the
Cocos Ridge) created by volcanism at the Galapagos
hot spot [von Huene et al., 1995]. Geochemical
trends along the arc, specifically contributions from
a hydrous serpentinized slab mantle source beneath
Nicaragua [Abers et al., 2003; Eiler et al., 2005]
and a basaltic source beneath Costa Rica [Hoernle
et al., 2008], correlate with deep flexural faulting
parallel to seafloor fabric at the outer rise near
Nicaragua and less deeply faulted lithosphere near
Costa Rica [Rüpke et al., 2002; Ranero et al., 2001].

[8] The volcanic arc in Costa Rica is built upon two
major tectonic blocks, the Chortis Block and the
Chorotega Block [Dengo, 1985]. The Chortis Block
is primarily underlain by Paleozoic continental
basement [Rogers et al., 2007], and the Chorotega
Block is underlain by ~20km of CLIP crust [Sinton
et al., 1998] that formed during Late Cretaceous hot
spot volcanism [Hauff et al., 2000; Meschede and
Frisch, 1998, and references therein]. The boundary
between these two terranes is debated within a
~100km range between southern Nicaragua and
northern Costa Rica [Dengo, 1985; Hauff et al.,
2000; MacKenzie et al., 2008; Baumgartner et al.,
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Figure 1. Location map of the Central American Volcanic Arc with pertinent tectonic features. Slab depth contours
(gray) are shown with a contour interval of 20 km (QSC: Quesada Sharp Contortion) [Protti et al., 1994]. Locations of
active volcanoes are denoted with black triangles (BA: Barva, TU: Turrialba, IR: Irazu). The southernmost debated
boundary between the Chortis and Chorotega blocks is shown by the blue dashed line [Linkimer et al., 2009]. Stars
indicate shot locations—larger stars denote the profiles presented in this paper; smaller stars indicate the along-arc
transect also collected in this survey. Black circles are receiver locations.
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2008; Linkimer et al., 2009]. Our profile lies south
of the southernmost proposed boundary for the
Chorotega Block, and thus the arc here is likely to
have been built upon the CLIP (Figure 1).

[9] Magmatism in central and northern Costa Rica
has been producing extensive silicic ignimbrites
from ~6Ma to present [Vogel et al., 2004]. Through-
out deposition of these silicic lavas, overlapping
volcanic ranges were produced by northeastern arc
migration from the Cordillera de Aguacate to the
modern Central Volcanic Cordillera [Marshall et al.,
2003]. Vogel et al., 2004, 2006 propose that
emplacement of subduction-related silicic magmas
is transforming the CLIP in Costa Rica to continental
crust. The proposed mechanism for evolving silicic
magmas (i.e., juvenile continental crust) in Costa
Rica relies upon partial melting or fractional crystal-
lization of recently emplaced, mantle-derived, hot,
stalled magmas [Vogel et al., 2004, 2006].

[10] Previous geophysical studies of the northern and
central Costa Rican volcanic arc have suggested
compositions similar to continental crust but have
limited resolution in defining crustal boundaries and
velocity gradients [e.g., McIntosh et al., 1995, 2000;
Sallarés et al., 1999, 2000, 2001; Husen et al.,
2003; Linkimer et al., 2009; MacKenzie et al.,
2008]. These studies agree upon a relatively thick
(30–40 km) crust with lower crustal velocities less
than 7.5 km/s. The upper plate has been divided into
three layers based on velocity gradients: a layer of ex-
trusive volcanics in the upper crust, a layer of basalts
related to the CLIP, and a layer of mafic granulites
that transition to a low-velocity mantle containing
underplated basaltic magmas [Sallarès et al., 2001].

3. Seismic Data Acquisition and
Processing

[11] In 2005, we conducted a wide-angle seismic
refraction experiment across the Costa Rican segment
of the Central American Volcanic Arc. Here we
present results from the 154 km-long across-arc
transect. Twenty explosive sources were detonated
at an average 7 km spacing, although source spacing
is denser on the southwest half of the line (~5 km
interval). Seismic sources ranged from 300 to
1025 kg of pentaerythritol tetranitrate explosives in
drill holes up to 60m beneath the ground surface.
Larger sources were placed at the end of the profile
to increase the signal-to-noise ratio at far-offset
receivers. Seismic data was recorded using 742
vertical-component short-period Reftek seismometers

from the U.S. national seismic instrumentation
facility IRIS/PASSCAL with a 200m receiver
interval and 4ms sample rate. Minimal processing
was required to interpret shot gathers and involved a
5–10Hz minimum-phase bandpass filter and velocity
reduction of 6 km/s. Overall, data quality is good with
a high signal-to-noise ratio on most shot gathers
(Figure 2, auxiliary material). Crustal refractions are
observed at most offsets, and reflections are observed
on several gathers, especially at the longest offsets.
Travel-time picks of first arrivals and secondary
arrivals were made by hand using the filtered and
reduced record sections. Picks were made on data
with velocity reduction of 6 km/s to assist in
distinguishing between upper and lower crustal
arrivals. The 20 shot gathers provided a total of
9971 travel-time picks for crustal turning compres-
sional waves (Pg) and 584 travel-time picks of
reflected arrivals.

4. Methods

4.1. First Arrival Tomography

[12] Seismic travel times from crustal refractions
were used to constrain the upper-crustal velocity
structure across the Costa Rican Arc. Travel-time
picking errors were calculated to increase with
offset and range from 50ms at well-resolved near-
offsets to 150ms at the farthest offsets where noise
has the largest affect on interpretation. Using the
first-arriving energy from each of the 20 explosion
sources, we inverted for a 2-D velocity model using
Tomo2D [Korenaga et al., 2000]. This method
employs a hybrid ray-tracing method that combines
the graph and ray bending methods. The model was
parameterized as a mesh hanging beneath the land
surface with node spacing every 300m laterally
and 50m vertically. The initial velocity model used
a 1-D velocity-depth function hung from the model
topography. We subsequently conducted iterative
ray-tracing and linearized inversions to converge to
a well-fitting seismic velocity model. To regularize
the inversion, we applied correlation lengths that
increase linearly with depth and range from 5 to
10 km horizontally and 1 to 5 km vertically. As
stopping criteria for the iterative inversion, we
minimized the root-mean-square (RMS) travel-
time residuals such that the RMS does not vary more
than 10ms between two successive iterations. After
five iterations, the misfit was sufficiently reduced to
an RMS of 64ms, and the chi-squared statistic (w2)
was reduced to 0.71. The final velocity model for
the upper 20 km of crust is shown in Figure 3.
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4.2. Floating Reflectors

[13] To maximize the utility of this data set and avoid
a priori bias by defining boundaries given a limited
number of observations and small survey aperture,
we modeled reflections observed in the shot gathers
as floating reflectors using the ray-tracing code
RAYINVR [Zelt and Smith, 1992; Zelt and Forsyth,
1994]. Limited reciprocity among few reflections
on the shot gathers make identifying consistent
reflective boundaries difficult. Floating reflectors
allow reflective interfaces to be modeled as segments
that “float”within the velocitymodel without assigning
a particular velocity structure. To estimate mid-lower
crustal velocities, we independently modeled twenty
floating reflectors by subjecting each reflector to
individual velocity models that vary in average
mid-lower crustal velocity. Each reflector was then
plotted by color according to its best-fit average-
velocity model (Figure 4).

[14] During the modeling process, we found many
different statistically acceptable models for a given
floating reflector because of the velocity-depth
ambiguity common to seismic modeling, and also
assigned picking errors allow for a range of apparent
velocities. The inversion process can inadequately
represent apparent velocities of travel-time arrivals
due to picking error allowance, which enables the
model to overcompensate travel-time picks at the
beginning and end of a reflection, thus driving RMS
misfit toward an acceptable but misleading value.
Therefore, we employed an additional statistical ap-
proach to further constrain velocities in the mid-
lower crust. We chose a best-fit velocity model that
minimizes the mismatch between the apparent
velocities of the observed arrivals (i.e., picked arri-
vals) and synthetic arrivals (i.e., arrivals calculated
from ray-tracing) [Smith, 1999]. Apparent velocities
were calculated as the slope of the observed and syn-
thetic arrivals. For a given average-velocity model to
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Figure 2. Examples of shot gathers collected across the Central American Volcanic Arc in Costa Rica: (a) Shot 1,
(b) Shot 8, (c) Shot 16, and (d) Shot 24. All recorded phases are shown (top) with a reduction velocity of 6 km/s.
Picked first arrivals (blue) and reflected phases (red) are displayed (bottom). The horizontal axis is source-receiver
offset. Data are displayed with a 5–10Hz minimum-phase bandpass filter. Vertically exaggerated elevation profiles
with shot locations (blue triangles) are displayed beneath shot gather pairs.
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fit the travel-time observations acceptably well, it
must minimize the RMS travel-time residual as well
as match the observed apparent velocity within
�0.5 km/s. Each reflector was modeled in separate
velocity models by incrementing the average velocity
in the mid-lower crustal layer (20–70 km depth) by
0.1 km/s from 6.8 to 7.8 km/s while maintaining the
first-arrival tomography model to 20 km depth. In
each velocity model, the reflector depth and geometry
(i.e., dip) parameters were updated by inversion. The
criterion to choose the best-fit reflector within each
velocity model was to minimize the RMS travel-time
residual and the apparent velocity mismatch while
still tracing 90% of the observed travel times. For a
given arrival, the best-fit statistics for the modeled
reflectors from every velocity model were plotted,
and the model that minimized the RMS and slope
mismatch was chosen as the best average-velocity
model for that arrival observation (Figure 5). Table 1
provides an estimate of the trade-off between velocity
and reflector geometry for two representative reflec-
tors. From the compiled statistics (e.g., Table 1) and
previously defined criterion, we estimate error for
velocity is �0.3 km/s, depth of reflector is �5 km,
and dip of the reflector �3�. In all cases, the RMS
values either supported the best-fit choice based
on the slope mismatch calculation or were not
minimized, and the slope mismatch alone provided
a good criterion for defining a range of average
velocities for which a reflector was best modeled.

[15] The statistically best-fitting floating reflectors
along with ray coverage are shown in Figure 4.
Due to vertical and lateral heterogeneities as well
as a lack of refracted rays at these depths, we show
each reflector color-coded by the best-fit average
velocity. Most reflectors have a slight dip toward
the northeast as required by the models to account
for the high apparent velocities of the travel-time
picks. In general, the mid-lower crust below the
arc in Costa Rica is highly reflective with lower
average velocities (6.8–7.5 km/s) modeled for reflec-
tors <50 km depth. These velocities are similar to
preliminary results reported by a coincident double-
sided onshore-offshore survey [Everson et al., 2012].
The highest average-velocity reflectors are located
at depths similar to slab depths obtained by Husen
et al. [2003].

5. Results

5.1. Seismic Velocity Model

[16] Our finalmodel contains velocities of 5.0–6.6km/s
in the upper crust to a depth of 15 km, 6.6–7.5 km/s

in the middle and lower crust, and a total crustal
thickness beneath the active arc of 40–50 km
(Figures 3 and 4). The primary features observed in
the upper-crustal model (Figure 3) are a high-velocity
anomaly beneath Barva Volcano (km80 in the
model) and elevated velocities under the Cordillera
de Aguacate (km50 in the model) and the extinct
Sarapiquí Arc (km110 in the model). Features of
the floating reflector model include a region of
reflectors with similar dip and low average velocities
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Figure 5. Statistics plots used to determine best-fit
average layer velocity for each floating reflector: RMS
travel-time residual (blue diamonds) and difference
between calculated and observed apparent velocities
(red circles). (a) Statistics from reflection 1 trend together
and make the best-fit modeled velocity easy to identify.
(b) Statistics from reflection 24 do not trend together,
and the velocity difference calculation is used to identify
the best-fit modeled velocity. Gray areas indicate a region
of acceptable velocities used to estimate error.

Geochemistry
Geophysics
GeosystemsG3G3 HAYES ET AL.: CRUSTAL STRUCTURE OF THE COSTA RICAN ARC 10.1002/ggge.20079

1093



highlighted in Figure 4 as a crust-mantle transition
zone and a region of reflectors with high average
velocities that have a similar depth to the subducted
slab that has been modeled in other studies (e.g.,
Husen et al., 2003).

5.2. Resolution and Uncertainty Analysis

[17] The overall data misfit observed in the model
will be affected by errors in travel-time picks, the
subjectivity of travel-time phase interpretation,
projection of the 3-D experiment geometry onto
the 2-D modeled profile, and accuracy of the initial
velocity model chosen for inversion. First-arrival
refractions have assigned picking errors that range
from 50ms at near-offsets to 150ms at offsets
where first arrivals are apparent but difficult to
identify precisely. Deep crustal reflections have
assigned errors of 100ms. Pn and PmP phases are
not strictly interpreted in this data set due to a
limited maximum offset; therefore, the subjectivity
of phase interpretation is greatly reduced. First-
arrival refractions with an uncertain travel time,

caused by acquisition effects and local effects such
as absorption or attenuation, have a large picking
error and were excluded from the inversion. Due
to the 3-D distribution of sources and receivers
along our profile, we projected these locations onto
a 2-D line. This projection will introduce some
distortion via shortened ray paths because offset is
not preserved. Average offline projection is ~500m,
which gives a projected error of ~80m at 1.5 km
offset and an estimated uncertainty of ~40ms at a
velocity of 2 km/s. The near-offset error is dominated
by this distortion, whereas the far-offset error is
dominated by picking uncertainty; thus, we assign a
picking error of 50ms for near-offset arrivals.

[18] To quantify uncertainty and model convergence
in our final model, we conducted a Monte Carlo
simulation, and, to test structural resolution, we
inverted synthetic travel times created from checker-
board-style velocity models. A first-order assess-
ment of model resolution can be made through
observations of the total ray coverage (Figure 3b).
Dense ray coverage is observed in the upper 5 km
across the entire model and up to 15 km beneath

Table 1. Modeling Statistics from Representative Floating Reflectorsa

Average
Velocityb

RMS
(ms) w2

# Rays
Tracedc

Velocity
Differenced (km/s)

Average Depth to
Reflector (km)

Reflector
Length (km)

Reflector
Dipe (deg)

Shot 1, Reflection 1 (22 travel-time observations)
6.8 72 0.543 22 0.60 46.5 6.6 �21.0
6.9 48 0.239 22 0.41 49.7 6.3 �18.8
7.0 20 0.044 22 0.12 52.4 7.5 �15.7
7.1 30 0.093 21 0.05 54.8 7.3 �16.0
7.2 49 0.253 19 0.28 56.8 7.2 �16.4
7.3 69 0.503 19 0.50 58.7 7.1 �13.8
7.4 95 0.941 22 0.67 60.2 7.9 �14.9
7.5 123 1.594 19 0.95 61.9 8.2 �14.3
7.6 132 1.826 18 0.92 63.4 8.5 �16.2
7.7 131 1.801 19 2.20 64.8 8.0 �17.3
7.8 150 2.394 14 1.47 66.1 7.8 �17.7
7.9 162 2.820 14 0.93 67.5 7.8 �17.7

Shot 24, Reflection 20 (25 travel�time observations)
6.8 106 1.233 14 0.72 34.7 3.9 �25.4
6.9 73 0.580 18 0.62 35.8 9.0 �21.8
7.0 74 0.612 13 0.68 36.9 9.2 �21.1
7.1 51 0.275 23 0.49 39.0 7.2 �20.4
7.2 50 0.269 18 0.20 40.8 7.9 �20.4
7.3 43 0.193 23 0.02 41.6 15.2 �19.2
7.4 41 0.177 18 0.08 44.3 8.2 �19.7
7.5 48 0.246 23 0.42 46.1 15.2 �15.9
7.6 36 0.141 17 0.28 48.0 12.9 �16.2
7.7 57 0.344 20 0.84 49.0 13.1 �17.2
7.8 78 0.648 24 1.38 51.9 11.9 �12.1
7.9 56 0.330 22 1.24 53.2 10.5 �11.0
aItalicized values represent estimated range of acceptable values based on reported statistics.
bAverage velocity of the lowermost layer in which all reflectors are modeled.
cOr the number of travel-time observations modeled.
dSee section 4.2 for a description of the velocity difference calculation.
eMost reflectors in this study dip to the NE.
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the active arc, giving confidence that these areas are
well resolved. The modeling of floating reflectors,
discussed later, places additional constraints on
model structure.

[19] A Monte Carlo simulation was performed to
estimate the variability of P-wave velocities within
acceptable models given our interpreted travel-time
picks [Tarantola, 1987; Korenaga et al., 2000]. We
produced 343 starting models from 1-D velocity-
depth profiles that vary in gradient and span the
range of velocities shown in Figure 6b.We generated
starting velocity-depth profiles for the Monte Carlo
simulation by perturbing the average-velocity-depth
profile of our initial model by �0.6 km/s, in
increments of 0.3 km/s, at node depths of 2, 7, and
20 km. Velocity-depth profiles were made by
connecting the nodes for every possible 1-D configu-
ration while restricting the profile to avoid negative
velocity gradients. Starting models were then made
by individually hanging each 1-D velocity-depth
profile from the model topography, yielding a
consistent vertical gradient across the entire profile.
Each starting model was then inverted with the same
parameters used to derive the final model. The
standard deviation of all the inversion results was
then calculated to estimate model convergence
among a range of initial models. Results of the
Monte Carlo simulation show that each model
converged to a model similar to our final model with
an error of �100m/s in areas of dense ray coverage
(Figure 4). Velocities are well constrained to
~18 km depth and poorly constrained at the model
edges below 4 km depth.

[20] To test the long-wavelength velocity structure
resolution of our model, we performed a checkerboard

test. This was done primarily to validate the observed
structure beneath the extinct arcs at km 50 and
110 along the profile. The checkerboard test was
accomplished by calculating synthetic travel times
through a perturbed velocity model while retaining
the original survey geometry. We then added
random noise of �50ms to the synthetic travel
times, inverted these synthetic data with an initial
unperturbedmodel, and finally compared the recovery
to the initial model. Our perturbed velocity model
involved a checkerboard pattern of 40 km� 5 km
(horizontal� vertical sinusoid) using a velocity
variation of �8% (Figure 7a). After five iterations,
the inversion results show that the relatively high-
velocity, long-wavelength structures to 10 km depth
can be recovered but that lateral variations in
velocity structure are poorly resolved beneath that
depth (Figure 7b).

[21] To test the capability of our data and model
parameters to resolve a fast velocity anomaly such as
that observed beneath Barva volcano at 5 km depth,
we used a similar procedure to the checkerboard test
but embedded a single square high-velocity anomaly
rather than a sinusoidal pattern. The anomaly
embedded was a 10 km� 2 km rectangle with an
8% velocity perturbation (Figure 8a). We then
calculated synthetic travel times and inverted with
the same parameters used to derive the final model.
The result after five inversion iterations recovers the
anomaly relatively well (Figure 8b). The boundaries
of the anomaly are smeared, and the recovered
anomaly has slightly lower velocity amplitude than
the synthetic model. The velocity anomaly imaged
beneath Barva in the final velocity model is thus
likely spatially more compact with higher velocity
amplitude in reality.
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6. Discussion

6.1. Generation of Continental Crust at Arcs

[22] Inferred mafic crustal compositions of the
volcanic front in central Costa Rica from wide-angle
seismic data coupled with geochemical observations
of silicic melts at the surface [Vogel et al., 2004,
2006] suggest that arc crust in Costa Rica is actively
differentiating toward continental compositions. The
transition to mature continental material may yet
occur by a variety of potential processes, including
modification by accretion of the arc to other crustal
material [Draut et al., 2009] and further differentia-
tion that may lead to delaminating lower crustal
material [Ducea and Saleeby, 1998]. Modification
by accretion may be highly dependent on the

composition of the accreting margin and the ability
of magmatic mixing, assimilation, and further
fractionation to occur. Delamination mechanisms,
however, provide an in situ process for creating
continental material within an island arc.

[23] Evolution of arc material to more silicic com-
positions via lower crustal delamination has been
proposed to explain the andesite paradox [Ducea
and Saleeby, 1998; Kay and Kay 1991, 1993;
Herzberg et al., 1983; Behn and Kelemen, 2006;
Kelemen, 1995]. In this case, ultramafic residuals
eventually become dense enough to founder into
the deeper mantle. This process has been evoked
to explain the lack of a deep crustal “root” in the
Sierra Nevada [Ducea and Saleeby, 1995], where
the missing root assemblages are interpreted to have
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delaminated. While there is no evidence for this to
have already occurred beneath our profile in central
Costa Rica (i.e., no regional uplift or increased heat
flow), progressive magmatic differentiation may lead
to future foundering of the dense ultramafic residuals,
cumulates, and garnet pyroxenites. The inferred
average velocity of the lower crust in central Costa
Rica likely does not reflect a large proportion of
ultramafic material; however, the highly reflective
CMTZ may indicate isolated regions of olivine
cumulates or garnet-bearing phases. If sediment
relamination [Hacker et al., 2011] is a major contrib-
utor to the growth of continental crust at the Costa
Rican volcanic front (i.e., the velocity interpretations
of a mafic lower crust are hindered by the presence

of garnet, and the reflections are caused from diapiric
relamination), then bulk continental crust may be
significantly more felsic than predicted. In 2008, an
onshore-offshore survey was conducted as an
additional component of TICO-CAVA that will
provide long enough offsets to further constrain lower
crustal velocities and structure and possibly help
resolve the relative contributions between magmatic
and relamination processes.

6.2. Comparison to Geophysical Studies of
Other Active Arcs

[24] There are striking differences and similarities
between our results and those from intraoceanic
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arcs; in particular, we compare our results with
geophysical studies of the Izu-Bonin and Aleutian
arcs. The Aleutian arc is predominantly mafic and
is characterized by a 35 km-thick crust, three distinct
compositional layers, a thick lower-crust, a well-
defined Moho, and little extension [Calvert, 2011,
and references therein]. The Izu-Bonin has variable
crustal thickness (10–35km), has a mafic bulk com-
position with heterogeneous areas of intermediate-
felsic material, a highly reflective lower-crust with a
5–10 km-thick crust-mantle transition zone, and has
seen relatively large amounts of extension [Calvert,
2011, and references therein]. Below we will briefly
compare these arcs with our results.

[25] On average, velocities across the Costa Rican
volcanic front are at the high-velocity extreme of
bulk continental crust and slightly lower thanmodern
island arc velocities (Figure 9). Seismic velocities
less than 6.5 km/s characterize crust above a depth
of 13 km at the volcanic front, whereas crust in the
Izu-Bonin and Aleutian arcs reach average velocities
greater than this at depths of only 8–10 km [Calvert,
2011]. Velocities of <6.5 km/s are too low to be
gabbroic and are commonly associated with tonalitic/
intermediate compositions [e.g., Calvert, 2011;
Kawate and Arima, 1998; Suyehiro et al., 1996].
Despite the fact that velocities of mafic rock can
be lowered by fractures and diagenesis in the

shallow crust, the relatively low velocities found in
central Costa Rica, particularly at depths greater
than 8–10 km (>0.2GPa confining pressure),
suggest a larger proportion of felsic-intermediate
compositions in the upper crust than found in the
Aleutian and Izu-Bonin arcs. While only roughly
constrained using average velocities obtained from
reflected arrivals, mid-lower crustal velocities in
central Costa Rica also appear on average to be
lower than those found in other island arcs.

[26] The lower crust in central Costa Rica lacks the dis-
tinctly thick (10–20km), high-velocity (7.3–7.7 km/s)
lower crust seen in the Aleutian arc [Holbrook et al,
1999; Schillington et al., 2004]. These high velocities
have been interpreted by Schillington et al. [2004] as
interlayered mafic residues and ultramafic cumulates
along with abundant garnet-bearing assemblages. The
estimated best-fit average velocities of the mid-lower
crust based on floating reflectors beneath the active
arc are between 6.8 and 7.1 km/s. The proportion of
ultramafic and garnet-bearing mafic rocks is unclear
from these roughly constrained velocities, but on aver-
age this velocity range suggests mafic compositions
such as hornblendites and gabbro-norite-troctolites
[Christensen and Mooney, 1995]. The lower crustal
velocities likely include, at least in part, mafic veloci-
ties related to the CLIP upon which the volcanic arc
in Costa Rica was built.

[27] The relatively low average velocities observed
in the lower crust of the volcanic arc in central
Costa Rica and the highly reflective crust-mantle
transition zone likely represent complex interactions
of crust and mantle during crustal growth as
previously discussed. Sallarès et al. [2001] also
suggest a transitional structure in northern Costa
Rica interpreted as underplated magmas and
serpentinized mantle. Similar transitional structure
is also observed along the central Andean arc and
the Izu-Bonin arc, where more evolved composi-
tions are also inferred in the upper and mid-crust
[ANCORP Working Group, 2003; Kodaira et al.,
2007; Sato et al., 2009]. A transition zone in the
central Andes is attributed to mechanical instability
of the Moho from hydration of mantle rocks,
magmatic intraplating and underplating, and partial
melting [ANCORP Working Group, 2003]. Along
the Izu-Bonin arc, a 5 to 10 km-thick transition zone
between ~20 and 30 km depth is interpreted, with
velocities ranging between 7.2 and 7.6 km/s
[Kodaira et al., 2007; Tatsumi et al., 2008; Sato
et al., 2009]. The Izu-Bonin CMTZ is compara-
tively well constrained frommodeling of the velocity
contrasts causing reflections [Sato et al., 2009] and
interpreted to be a mixture of mafic restites and
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olivine cumulates that vary in proportion along the
arc. The CMTZ in Costa Rica is likely similar in
nature to the Izu-Bonin CMTZ with the possibility
for a small component of relaminated sediments
within the transition zone as previously discussed.

6.3. Reflective Crust-Mantle Transition
Zone

[28] Data seen in shot gathers indicate a highly
reflective lower crust, which has been modeled using
floating reflectors (Figure 4). We interpret a roughly
10 km-thick crust-mantle transition zone (CMTZ),
with crustal thickness of ~40� 5 km below the active
arc. This crustal thickness is in agreement with
previous gravity and seismological studies [Lucke
et al., 2010; MacKenzie et al., 2008; Sallarès et al.,
1999]. The CMTZ may represent a mafic residual
from differentiation of magmas [e.g., Kelemen
et al., 2003], relamination of sediments [Hacker
et al., 2011], and/or a small portion of ultramafic
cumulates. We will briefly examine each of these
possibilities in this section.

[29] The Costa Rican subduction zone is a non-
accreting margin [e.g., von Huene and Scholl,
1991] in which sediments and basement material
from the slab may be subducting or accreting further
inboard [Vannucchi et al., 2001]. This raises the
possibility recently proposed by Hacker et al.
[2011] that relamination of subducted sediments
and eroded material from the upper plate is a
mechanism for thickening arc crust and recycling
continental material. Assuming a constant subduc-
tion rate of ~87mm/yr [DeMets, 2001] since
~65Ma [Meschede and Frisch, 1998] with a thickness
of sediments subducted ~0.5km [Ivandic et al., 2008;
van Avendonk et al., 2010] and density change of
~300 kg/m3 [Hacker et al., 2011], the total cross-
sectional area of subducted sediments over the life
of the MAT can be estimated as ~2500 km2. Given
the approximate cross-sectional area of our profile
(~4800 km2) and the estimated area of preexisting
CLIP across our profile (~2000 to ~3000 km2) from
assuming a 12–20 km thickness found in studies of
the adjacent Colombian Basin [Case et al., 1990],
if all subducted sediment were relaminated beneath
the arc, the expected volume would completely fill
the available crustal space, leaving no room for
new material from arc-related intrusions. This esti-
mate is unreasonable given the voluminous magma-
tism observed across the volcanic arc in Costa Rica.
Recent work has suggested that sediments from the
Costa Rican subduction zone are being accreted
under the coast, causing uplift but not reaching

magma-generating depths [Sak et al., 2009]. Ob-
served velocities and reflections in the mid-lower
crust of our final velocity model do not preclude sed-
iment relamination in producing crust in Costa Rica,
especially if garnet-bearing metasediments exist. We
recognize that some portion of sediments from the
subducting slab may be relaminated and may help
in producing impedance contrasts large enough to
yield the reflections observed in the data, but the lim-
ited ray coverage from this data set make the propor-
tions difficult to quantify.

[30] Another possible explanation for the reflective
lower crust is that it represents mafic cumulates,
intrusions, and restite—the result of magmatic
differentiation. Kay and Kay [1982; 1993] propose
that relatively felsic lavas can be produced in arcs
by high-pressure fractionation of mantle-wedge-
derived magmas. If this process is responsible for
the portion of felsic volcanism observed at the
surface of the Central Volcanic Cordillera [Vogel
et al., 2004], a large volume of mafic residual must
reside in the middle and lower crust [White et al.,
2006] beneath the Costa Rican volcanic front. In
our final velocity model, mid- and lower-crustal
velocities between 20 and 40 km depth average
7.0 km/s, and although there are large error bars of
�0.5 km/s, this average velocity is consistent with
a gabbroic composition [Christensen and Mooney,
1995]. Since this velocity range is too low to be
predominantly ultramafic as predicted by velocities
>7.5 km/s [Christensen and Mooney, 1995], we
interpret this average velocity to represent mafic
plutons and intrusions. Velocities within the CMTZ
are not well constrained; thus, the exact velocity
contrast causing these reflections is difficult to assess.
A small portion of ultramafic cumulates within the
mafic material would yield impedance contrasts large
enough to generate a reflection.

6.4. Aguacate and Sarapiquí Remnant Arcs

[31] Neogene volcanism was focused along two
remnant arcs: the Aguacate Arc, west of the Central
Volcanic Cordillera [Alvarado et al., 2000] and the
Sarapiquí Arc northeast of the Central Volcanic
Cordillera [Gazel et al., 2005, 2009]. The volcanic
center has since migrated from the Aguacate Arc
northeastward to the Central Volcanic Cordillera
in response to subduction of hotspot-thickened
crust and subsequent slab shallowing [Marshall
et al., 2003; Gazel et al., 2009, 2011]. Dense
vegetation, ash flows, and other volcaniclastic
sediments obscure the surface remnants of both
extinct arcs; however, petrologic samples from
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outcrops and drill core reveal calc-alkaline volcanism
[Alvarado et al., 2000; Alvarado and Gans, 2012;
Marshall et al., 2003;Gazel et al., 2005]. Our profile
traverses relatively close to the Palmares Caldera, a
remnant of the extinct Aguacate Arc [Alvarado
et al., 2000]. We interpret the long-wavelength,
high-velocity feature on the western side of our
profile to be remnant paleo-volcanism from the
extinct Aguacate Arc and a similar feature on the
eastern side of our profile to be the extinct Sarapiquí
Arc (Figure 3a). A comparison between velocity-
depth profiles beneath Barva volcano and the
extinct Aguacate Arc show the extinct arc to
have higher seismic velocities in the upper few
kilometers and lower velocities in the mid-crust
(Figure 9). Below 10 km depth, velocities in the
modern arc are higher than those found in
the Aguacate Arc. This may be the result of a
higher degree of fractionation in the modern arc,
where a relatively mafic residue is ponding in the
mid-crust. Velocities of the modern arc above
10 km depth are lower than the Aguacate Arc but
similar to those at the remnant Sarapiquí arc;
this may be attributed to diagenesis and/or high-
porosity pyroclastic deposits such as tuffs and ignim-
brites found near Barva [Denyer and Alvarado,
2007; Alvarado and Gans, 2012]. Higher velocities
observed at the Agucate Arc within the upper
10 km may also be the result of more dioritic
Neogene volcanism, as evidenced by a diorite
intrusion that outcrops near our profile at Cedral
Mountain [Lücke et al., 2010].

6.5. Relict Magma Chamber

[32] Barva is a dormant shield volcano that has
produced a range of compositions from mafic basalts
to more evolved andesites and trachytes, both
common of volcanoes in Costa Rica [Pérez et al.,
2006]. In our final velocity model, an isolated high-
velocity anomaly (~6.2 km/s) is imaged beneath
Barva volcano at 4 km depth (Figure 3a). The resolu-
tion test indicates that a velocity anomaly beneath
Barva is likely smaller in size and has even higher
velocity amplitude than modeled. We interpret this
anomaly as a relict magma chamber, in proximal
agreement with depths of magma chambers
predicted by petrological and geophysical studies of
adjacent volcanoes [e.g., Alvarado et al, 2006;
Benjamin et al., 2007;Martini et al., 2011; Lizarralde
et al., 2010]. Hypocenters of recent seismic events
associated with magma migration at Turrialba
volcano are consistently placed at 4–6 km depth
[Martini et al., 2011]. At neighboring Irazú, seismic
swarms are common at depths shallower than 7 km,

with few occurring at depths up to 14 km [Barquero
et al., 1995]. Density models from gravity data
consistently place low-density heterogeneities
related to Quaternary volcanism between 2 and
6 km depth [Lücke et al., 2010]. From petrographic
and geobarometric analysis, Alvarado et al. [2006]
conclude that two magma chambers exist beneath
Irazú at depths <5 km below the surface. A low-
velocity anomaly is predicted in the presence of an
active magma chamber, so we propose that this
high-velocity anomaly is produced by a relatively
mafic cumulate residue of a previously active
magma chamber.

7. Summary

[33] We modeled the seismic structure of the Cen-
tral American Volcanic Arc in Costa Rica on a
154 km-long, across-arc profile using a dense array
of onshore receivers and explosive sources. Veloc-
ities in the uppermost crust are well constrained by
travel-time tomography, and the mid-crust to lower
crust is roughly constrained by ray trace modeling
of reflections. From our velocity models, we con-
clude that p-wave velocities across the Costa Rican
volcanic front are at the high-velocity extreme of
bulk continental crust and lower than modern
intraoceanic arcs. Numerous reflections observed
on shot gathers are interpreted as an extensive
crust-mantle transition zone. This transition is
likely a heterogeneous region consisting of relami-
nated sediment diapirs, cumulates, intrusions, and
restite. Evolution of this crust to mature continental
material may yet occur by continued fractionation
and subsequent delamination. The thickened crust
in this region may contribute to this evolution by
acting as a density filter for mafic material thus
enhancing the opportunity for differentiation and
genesis of continental crust.

[34] Two areas of elevated upper crustal velocities
are interpreted as remnants of the extinct Sarapiquí
and Aguacate Arcs. A comparison between veloc-
ity-depth profiles beneath Barva volcano and the
Cordillera de Aguacate shows that the extinct arc
is faster in the upper few kilometers and slower in
the mid-crust. The slower velocities in the upper
10 km at Barva volcano compared to those at the
extinct arc are likely due to pyroclastic deposits
and relatively felsic volcanism at the modern volca-
nic center. The higher velocities below 10 km depth
may be the result of a higher degree of fractionation
at the long-lived modern volcanic center.
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