948 research outputs found

    Processing and mechanical properties of hollow sphere aluminum foams

    Full text link
    Hollow sphere metallic foams are a new class of cellular material that possesses the attractive advantages of uniform cell size distribution and regular cell shape. These result in more predictable physical and mechanical properties than those of cellular materials with a random cell size distribution and irregular cell shapes. In the present study, single aluminum hollow spheres with three kinds of sphere wall thickness as 0.1 mm, 0.3 mm and 0.5 mm were processed by a new pressing method. Hollow sphere aluminum foam samples were prepared by bonding together single hollow spheres with simple cubic packing (SC) and body-centered cubic packing (BCC). Compressive tests were carried out to evaluate the deformation behaviors and mechanical properties of the hollow sphere aluminum foams. Effects of the sphere wall thickness and packing style on the mechanical properties were investigated.<br /

    Reduction of eddy current loss in magnetoplated wire

    Get PDF
    ArticleCOMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING. 28(1):57-66 (2009)journal articl

    Reduction of proximity effect in coil using magnetoplated wire

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.ArticleIEEE TRANSACTIONS ON MAGNETICS. 43(6): 2654-2656 (2007)journal articl

    Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog

    Get PDF
    Alcohol synergistically enhances the progression of liver disease and the risk for liver cancer caused by hepatitis C virus (HCV). However, the molecular mechanism of this synergy remains unclear. Here, we provide the first evidence that Toll-like receptor 4 (TLR4) is induced by hepatocyte-specific transgenic (Tg) expression of the HCV nonstructural protein NS5A, and this induction mediates synergistic liver damage and tumor formation by alcohol-induced endotoxemia. We also identify Nanog, the stem/progenitor cell marker, as a novel downstream gene up-regulated by TLR4 activation and the presence of CD133/Nanog-positive cells in liver tumors of alcohol-fed NS5A Tg mice. Transplantation of p53-deficient hepatic progenitor cells transduced with TLR4 results in liver tumor development in mice following repetitive LPS injection, but concomitant transduction of Nanog short-hairpin RNA abrogates this outcome. Taken together, our study demonstrates a TLR4-dependent mechanism of synergistic liver disease by HCV and alcohol and an obligatory role for Nanog, a TLR4 downstream gene, in HCV-induced liver oncogenesis enhanced by alcohol

    Absolute elastic differential cross sections for electron scattering by C6 H5 CH3 and C6 H5 CF3 at 1.5-200 eV: A comparative experimental and theoretical study with C6 H6

    Get PDF
    We present absolute differential cross sections (DCS) for elastic scattering from two benzene derivatives C6 H5 CH3 and C6 H5 CF3. The crossed-beam method was used in conjunction with the relative flow technique using helium as the reference gas to obtain absolute values. Measurements were carried out for scattering angles 15°-130° and impact energies 1.5-200 eV. DCS results for these two molecules were compared to those of C6 H6 from our previous study. We found that (1) these three molecules have DCS with very similar magnitudes and shapes over the energy range 1.5-200 eV, although DCS for C6 H5 CF3 increase steeply toward lower scattering angles due to the dipole moment induced long-range interaction at 1.5 and 4.5 eV, and (2) that the molecular structure of the benzene ring significantly determines the collision dynamics. From the measured DCS, elastic integral cross sections have been calculated. Furthermore, by employing a corrected form of the independent-atom method known as the screen corrected additive rule, DCS calculations have been carried out without any empirical parameter fittings, i.e., in an ab initio nature. Results show that the calculated DCS are in excellent agreement with the experimental values at 50, 100, and 200 eV. © 2009 The American Physical Society.F.B. and G.G. were also supported by the Spanish Ministerio de Ciencia e Innovación Project No. FIS0032-00702 and the European Science Foundation EIPAM network and COST Action CM0601.Peer Reviewe

    Sudomotor and cardiovascular dysfunction in patients with early untreated Parkinson's disease.

    Get PDF
    BACKGROUND: According to Braak staging of Parkinson's disease (PD), detection of autonomic dysfunction would help with early diagnosis of PD. OBJECTIVE: To determine whether the autonomic nervous system is involved in the early stage of PD, we evaluated cardiovascular and sudomotor function in early untreated PD patients. METHODS: Orthostatic blood pressure regulation, heart rate variability, skin vasomotor function, and palmar sympathetic sweat responses were examined in 50 early untreated PD patients and 20 healthy control subjects. RESULTS: The mean decrease in systolic blood pressure during head-up tilt in PD patients was mildly but significantly larger than in controls (p = 0.0001). There were no differences between the 2 groups in heart rate variability, with analysis of low frequency (LF; mediated by baroreflex feedback), and high frequency (HF; mainly reflecting parasympathetic vagal) modulation. However, LF/HF, an index of sympatho-parasympathetic balance, was lower in the PD group than in controls (p = 0.02). Amplitudes of palmar sweat responses to deep inspiration (p = 0.004), mental arithmetic (p = 0.01), and exercise (p = 0.01) in PD patients were lower than in controls, with negative correlations with motor severity. Amplitudes of palmar skin vasomotor reflexes in PD patients did not differ from controls. CONCLUSIONS: Our study indicates impairment of sympathetic cardiovascular and sudomotor function with orthostatic dysregulation of blood pressure control, reduced LF/HF and reduction in palm sweat responses even in early untreated PD patients

    Discovery of possible molecular counterparts to the infrared Double Helix Nebula in the Galactic center

    Full text link
    We have discovered two molecular features at radial velocities of -35 km/s and 0 km/s toward the infrared Double Helix Nebula (DHN) in the Galactic center with NANTEN2. The two features show good spatial correspondence with the DHN. We have also found two elongated molecular ridges at these two velocities distributed vertically to the Galactic plane over 0.8 degree. The two ridges are linked by broad features in velocity and are likely connected physically with each other. The ratio between the 12CO J=2-1 and J=1-0 transitions is 0.8 in the ridges which is larger than the average value 0.5 in the foreground gas, suggesting the two ridges are in the Galactic center. An examination of the K band extinction reveals a good coincidence with the CO 0 km/s ridge and is consistent with a distance of 8 +/-2 kpc. We discuss the possibility that the DHN was created by a magnetic phenomenon incorporating torsional Alfv\'en waves launched from the circumnuclear disk (Morris, Uchida & Do 2006) and present a first estimate of the mass and energy involved in the DHN.Comment: 32 pages, 23 figures, Accepted by Ap

    Substitution effects in elastic electron collisions with CH₃X (X=F, Cl, Br, I) molecules

    No full text
    We report absolute elastic differential, integral, and momentum transfer cross sections for electron interactions with the series of molecules CH₃X (X=F, Cl, Br, I). The incident electron energy range is 50–200 eV, while the scattered electron angular range for the differential measurements is 15°–150°. In all cases the absolute scale of the differential cross sections was set using the relative flow method with helium as the reference species. Substitution effects on these cross sections, as we progress along the halomethane series CH₃F, CH₃Cl, CH3Br, and CH₃I, are investigated as a part of this study. In addition, atomic-like behavior in these scattering systems is also considered by comparing these halomethane elastic cross sections to results from other workers for the corresponding noble gases Ne, Ar, Kr, and Xe, respectively. Finally we report results for calculations of elastic differential and integral cross sections for electrons scattering from each of the CH₃X species, within an optical potential method and assuming a screened corrected independent atom representation. The level of agreement between these calculations and our measurements was found to be quite remarkable in each case.This work was conducted under the support of the Japanese Ministry of Education, Sport, Culture and Technology and also by the Ministerio de Educación Ciencia e Innovación Plan Nacional de Fisica, Project No. FIS2006- 00702, the Consejo de Seguridad Nuclear and the European Science Foundation COST Action No. CM0601. Additional support from the Australian Research Council, through its Centres of Excellence Program, and the Korea Science and Engineering Foundation Grant No. 2009-0052415 is further noted. One of us H.K. also acknowledges the Japan Society for the Promotion of Science JSPS for his fellowships as grants-in-aid for scientific research and, most recently, to facilitate his visit to Flinders University and the ANU

    Substitution effects in elastic electron collisions with CH3X (X = F, Cl, Br, I) molecules

    Get PDF
    We report absolute elastic differential, integral, and momentum transfer cross sections for electron interactions with the series of molecules CH3X (X = F, Cl, Br, I). The incident electron energy range is 50–200 eV, while the scattered electron angular range for the differential measurements is 15°–150°. In all cases the absolute scale of the differential cross sections was set using the relative flow method with helium as the reference species. Substitution effects on these cross sections, as we progress along the halomethane series CH3F, CH3Cl, CH3Br, and CH3I, are investigated as a part of this study. In addition, atomic-like behavior in these scattering systems is also considered by comparing these halomethane elastic cross sections to results from other workers for the corresponding noble gases Ne, Ar, Kr, and Xe, respectively. Finally we report results for calculations of elastic differential and integral cross sections for electrons scattering from each of the CH3X species, within an optical potential method and assuming a screened corrected independent atom representation. The level of agreement between these calculations and our measurements was found to be quite remarkable in each case
    corecore