76 research outputs found
Anomalous Dynamics of Forced Translocation
We consider the passage of long polymers of length N through a hole in a
membrane. If the process is slow, it is in principle possible to focus on the
dynamics of the number of monomers s on one side of the membrane, assuming that
the two segments are in equilibrium. The dynamics of s(t) in such a limit would
be diffusive, with a mean translocation time scaling as N^2 in the absence of a
force, and proportional to N when a force is applied. We demonstrate that the
assumption of equilibrium must break down for sufficiently long polymers (more
easily when forced), and provide lower bounds for the translocation time by
comparison to unimpeded motion of the polymer. These lower bounds exceed the
time scales calculated on the basis of equilibrium, and point to anomalous
(sub-diffusive) character of translocation dynamics. This is explicitly
verified by numerical simulations of the unforced translocation of a
self-avoiding polymer. Forced translocation times are shown to strongly depend
on the method by which the force is applied. In particular, pulling the polymer
by the end leads to much longer times than when a chemical potential difference
is applied across the membrane. The bounds in these cases grow as N^2 and
N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of
the radius of gyration to N. Our simulations demonstrate that the actual
translocation times scale in the same manner as the bounds, although influenced
by strong finite size effects which persist even for the longest polymers that
we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure
Anomalous Dynamics of Translocation
We study the dynamics of the passage of a polymer through a membrane pore
(translocation), focusing on the scaling properties with the number of monomers
. The natural coordinate for translocation is the number of monomers on one
side of the hole at a given time. Commonly used models which assume Brownian
dynamics for this variable predict a mean (unforced) passage time that
scales as , even in the presence of an entropic barrier. However, the time
it takes for a free polymer to diffuse a distance of the order of its radius by
Rouse dynamics scales with an exponent larger than 2, and this should provide a
lower bound to the translocation time. To resolve this discrepancy, we perform
numerical simulations with Rouse dynamics for both phantom (in space dimensions
and 2), and self-avoiding (in ) chains. The results indicate that
for large , translocation times scale in the same manner as diffusion times,
but with a larger prefactor that depends on the size of the hole. Such scaling
implies anomalous dynamics for the translocation process. In particular, the
fluctuations in the monomer number at the hole are predicted to be
non-diffusive at short times, while the average pulling velocity of the polymer
in the presence of a chemical potential difference is predicted to depend on
.Comment: 9 pages, 9 figures. Submitted to Physical Review
Incidence and Distribution of Microfungi in a Treated Municipal Water Supply System in Sub-Tropical Australia
Drinking water quality is usually determined by its pathogenic bacterial content. However, the potential of water-borne spores as a source of nosocomial fungal infection is increasingly being recognised. This study into the incidence of microfungal contaminants in a typical Australian municipal water supply was carried out over an 18 month period. Microfungal abundance was estimated by the membrane filtration method with filters incubated on malt extract agar at 25 °C for seven days. Colony forming units were recovered from all parts of the system and these were enumerated and identified to genus level. The most commonly recovered genera were Cladosporium, Penicillium, Aspergillus and Fusarium. Nonparametric multivariate statistical analyses of the data using MDS, PCA, BEST and bubble plots were carried out with PRIMER v6 software. Positive and significant correlations were found between filamentous fungi, yeasts and bacteria. This study has demonstrated that numerous microfungal genera, including those that contain species which are opportunistic human pathogens, populate a typical treated municipal water supply in sub-tropical Australia
Three Potential Sources of Microfungi in a Treated Municipal Water Supply System in Sub-Tropical Australia
Some microfungi are known to be opportunistic human pathogens, and there is a body of scientific opinion that one of their routes of infection may be water aerosols. Others have been implicated as causative agents of odours and off-tastes in drinking water. This study was undertaken to investigate three potential sources of microfungi in a treated, oligotrophic municipal water supply system in sub-tropical Australia. Formation of the microfungal component of developing biofilm on hard surfaces in water storage reservoirs was also assessed. Inside and outside air samples were collected from two reservoirs using two types of Burkard air samplers. Biofilm and soft sediment samples were collected from the inner surfaces of asbestos cement water pipes and from pipe dead ends respectively. These were analysed for microfungal growth and sporulation using Calcofluor White stain and epifluorescent microscopy. Artificial coupons of glass, PVC and concrete were immersed in two reservoirs to assess microfungal biofilm formation. This was analysed periodically using Calcofluor White stain and epifluorescent microscopy, cultures of coupon swabs and scanning electron microscopy. Fungal spores were recovered from all air samples. The number of colonies and the genera were similar for both inside and outside air. Microfungal filaments and sporulating structures were recovered from most of the pipe inner surface biofilm and dead end sediment samples, but were sparser in the biofilm than in the sediment samples. No recognisable, vegetative filamentous fungi were found in the slowly developing biofilm on coupons. This study indicates that airborne spores are an important potential source of microfungi found in water storage reservoirs. It has also demonstrated conclusively that filamentous microfungi grow and sporulate on water pipe inner surfaces and in soft sediments within the water distribution system
Obesity and smoking are factors associated with poor prognosis in patients with bacteraemia
BACKGROUND: Bacteraemia is still a major cause of case fatality in all age groups. Our aim was to identify the major underlying conditions constituting risk factors for case fatality in bacteraemia patients. METHODS: The study involved 149 patients (79 male and 70 female) with bacteraemia caused by Staphylococcus aureus (S. aureus) (41 patients), Streptococcus pneumoniae (Str. pneumoniae) (42 patients), β-hemolytic streptococcae (β-hml str.) (23 patients) and Eschericia coli (E. coli) (43 patients). Underlying diseases, alcohol and tobacco consumption and body mass index (BMI) were registered. Laboratory findings and clinical data were registered on admission and 6 consecutive days and on day 10–14. Case fatality was studied within 30 days after positive blood culture. Associations between underlying conditions and case fatality were studied in univariate analysis and in a multivariate model. RESULTS: Nineteen patients (12.8%) died of bacteraemia. We found obesity (p = 0.002, RR 9.8; 95% CI 2.3 to 41.3), smoking (p < 0.001, RR 16.9; 95% CI 2.1 to 133.5), alcohol abuse (p = 0.008, RR 3.9; 95% CI 1.3 to 11.28), COPD (p = 0.01, RR 8.4; 95% CI 1.9 to 37.1) and rheumatoid arthritis (p = 0.045, RR 5.9; 95% CI 1.2 to 28.8) to be significantly associated with case fatality in bacteraemia in univariate model. The median BMI was significantly higher among those who died compared to survivors (33 vs. 26, p = 0.003). Obesity and smoking also remained independent risk factors for case fatality when their effect was studied together in a multivariate model adjusted with the effect of alcohol abuse, age (continuos variable), sex and causative organism. CONCLUSION: Our results indicate that obesity and smoking are prominent risk factors for case fatality in bacteraemic patients. Identification of risk factors underlying fatal outcome in bacteraemia may allow targeting of preventive efforts to individuals likely to derive greatest potential benefit
Occurrence and antimicrobial resistance of Gram-negative bacteria isolated in haemodialysis water and dialysate of renal units: Results of a Greek multicentre study
Aims: To evaluate the occurrence, identity and antimicrobial resistance of Gram-negative bacteria isolated from municipal water supplies, treated water, and dialysate of all 85 Greek haemodialysis centres. Methods and Results: A total of 141 Gram-negative bacterial isolates (98 non-fermentative and 43 enterobacteria) were recovered from 255 water samples. Twenty-four of them were isolated from tap water, 31 from treated water, and 86 from dialysate samples. The mean concentrations (CFU per 100 ml ± S.D.) of the positive Gram-negative bacteria samples were 69.2 ± 43.9, 31.2 ± 28.7 and 3552.3 ± 4485.0, respectively. The most common isolates, in order of frequency were Pseudomonas aeruginosa (22.7%), Chryseobacterium meningosepticum (14.9%), Stenotrophomonas maltophilia (13.5%), Escherichia coli (12.8%) and Enterobacter cloacae (7.8%), representing 71.6% of all isolates. Ps. aeruginosa was the most prevalent isolate in all types of water sample followed by C. meningosepticum in tap and treated water and by E. coli in dialysate. Nineteen per cent of the enterobacteria and 35% of the non-fermenters were resistant against three or more of the nine antibiotics tested. Conclusions: These data suggest that dialysate and treated water could be a source of infection for several non-fermentative and enterobacterial species. Impact of the Study: Microbiological monitoring of such samples is needed in order to know the identity and antibiotic resistance profiles of their potentially pathogenic bacterial population
- …